开源手写签名检测模型

This article presents an open-source project for automated signature detection in document processing, structured into four key phases:

本文介绍了一个 开源项目,用于文档处理中的自动签名检测,分为四个关键阶段:

  • Dataset Engineering: Curation of a hybrid dataset through aggregation of two public collections.
  • 数据集工程:通过聚合两个公共集合来策划一个混合数据集。
  • Architecture Benchmarking: Systematic evaluation of state-of-the-art object detection architectures (YOLO series, DETR variants, and YOLOS), focusing on accuracy, computational efficiency, and deployment constraints.
  • 架构基准测试:对最先进的目标检测架构(YOLO系列,DETR变体和YOLOS)进行系统评估,重点关注准确性、计算效率和部署限制。
  • Model Optimization: Leveraged Optuna for hyperparameter tuning, yielding a 7.94% F1-score improvement over baseline configurations.
  • 模型优化:利用Optuna进行超参数调优,相较于基线配置提高了7.94%的F1分数。
  • Production Deployment: Utilized Triton Inference Server for OpenVINO CPU-optimized inference.
  • 生产部署:利用Triton推理服务器进行OpenVINO CPU优化推理。

Experimental results demonstrate a robust balance between precision, recall, and inference speed, validating the solution's practicality for real-world applications.

实验结果表明,在精度、召回率和推理速度之间实现了良好的平衡,验证了该解决方案在实际应用中的实用性。

Table 1: Key Research Features

表 1: 关键研究特征

Resource Links / Badges Details
Model Files HF Model Different formats of the final models\
PyTorch ONNX TensorRT
Dataset – Original Roboflow 2,819 document images annotated with signature coordinates
Dataset – Processed HF Dataset Augmented and pre-processed version (640px) for model training
Notebooks – Model Experiments ColabW&B Training Complete training and evaluation pipeline with selection among different architectures (yolo, detr, rt-detr, conditional-detr, yolos)
Notebooks – HP Tuning ColabW&B HP Tuning Optuna trials for optimizing the precision/recall balance
Inference Server GitHub Complete deployment and inference pipeline with Triton Inference Server\
OpenVINO Docker Triton
Live Demo HF Space Graphical interface with real-time inference\
Gradio Plotly
资源 链接 / 徽章 详情
模型文件 HF Model 最终模型的不同格式\
PyTorch ONNX TensorRT
数据集 – 原始 Roboflow 2,819张带有签名坐标的文档图像
数据集 – 处理过的 HF Dataset 增强和预处理版本(640px)用于模型训练
笔记本 – 模型实验 ColabW&B Training 完整的训练和评估管道,选择不同架构(yolo, detr, rt-detr, conditional-detr, yolos)
笔记本 – 超参数调优 ColabW&B HP Tuning 优化精确度/...
开通本站会员,查看完整译文。

首页 - Wiki
Copyright © 2011-2025 iteam. Current version is 2.142.1. UTC+08:00, 2025-04-04 18:57
浙ICP备14020137号-1 $访客地图$