70%的问题:关于AI辅助编码的严酷真相
After spending the last few years embedded in AI-assisted development, I've noticed a fascinating pattern. While engineers report being dramatically more productive with AI, the actual software we use daily doesn’t seem like it’s getting noticeably better. What's going on here?
在过去几年深入参与AI辅助开发后,我注意到了一个有趣的模式。虽然工程师们报告说使用AI后生产力显著提高,但我们日常使用的软件似乎并没有明显改善。这到底是怎么回事?
I think I know why, and the answer reveals some fundamental truths about software development that we need to reckon with. Let me share what I've learned.
我想我知道原因,这个答案揭示了一些关于软件开发的基本真理,我们需要认真对待。让我分享我所学到的。
[
[
I've observed two distinct patterns in how teams are leveraging AI for development. Let's call them the "bootstrappers" and the "iterators." Both are helping engineers (and even non-technical users) reduce the gap from idea to execution (or MVP).
我观察到团队在利用AI进行开发时有两种不同的模式。我们称它们为“自助型”和“迭代型”。这两者都在帮助工程师(甚至非技术用户)缩小从想法到执行(或MVP)的差距。
[
[
Tools like Bolt, v0, and screenshot-to-code AI are revolutionizing how we bootstrap new projects. These teams typically:
像Bolt、v0和截图转代码AI这样的工具正在彻底改变我们启动新项目的方式。这些团队通常:
-
Start with a design or rough concept
从设计或粗略概念开始
-
Use AI to generate a complete initial codebase
使用AI生成完整的初始代码库
-
Get a working prototype in hours or days instead of weeks
在几小时或几天内...