Elastic Distributed Training with XGBoost on Ray

摘要

In this blog, we discuss how moving to distributed XGBoost on Ray helps address these concerns and how finding the right abstractions allows us to seamlessly incorporate Ray and XGBoost Ray into Uber’s ML ecosystem. Finally, we cover how moving distributed XGBoost onto Ray, in parallel with efforts to move Elastic Horovod onto Ray, serves as a critical step towards a unified distributed compute backend for end-to-end machine learning workflows at Uber.

欢迎在评论区写下你对这篇文章的看法。

评论

首页 - Wiki
Copyright © 2011-2024 iteam. Current version is 2.137.1. UTC+08:00, 2024-11-23 00:00
浙ICP备14020137号-1 $访客地图$