有赞 Flink 实时任务资源优化探索与实践

摘要

随着 Flink k8s 化以及实时集群迁移完成,有赞越来越多的 Flink 实时任务运行在 K8s 集群上,Flink k8s 化提升了实时集群在大促时弹性扩缩容能力,更好的降低大促期间机器扩缩容的成本。同时,由于 K8s 在公司内部有专门的团队进行维护,Flink k8s 化也能够更好的减低公司的运维成本。

不过当前 Flink k8s 任务资源是用户在实时平台端进行配置,用户本身对于实时任务具体配置多少资源经验较少,所以存在用户资源配置较多,但实际使用不到的情形。比如一个 Flink 任务实际上 4 个并发能够满足业务处理需求,结果用户配置了 16 个并发。这种情况会导致实时计算资源的浪费,从而对于实时集群资源水位以及底层机器成本,都有一定影响。基于这样的背景,本文从 Flink 任务内存以及消息能力处理方面,对 Flink 任务资源优化进行探索与实践。

欢迎在评论区写下你对这篇文章的看法。

评论

首页 - Wiki
Copyright © 2011-2024 iteam. Current version is 2.137.1. UTC+08:00, 2024-11-23 06:08
浙ICP备14020137号-1 $访客地图$