使用QLoRA对LaTeX-OCR数据集进行Fine-Tuning Gemma 3 VLM

Fine-Tuning Gemma 3 allows us to adapt this advanced model to specific tasks, optimizing its performance for domain-specific applications. By leveraging QLoRA (Quantized Low-Rank Adaptation) and Transformers, we can efficiently fine-tune Gemma 3 while maintaining computational efficiency. QLoRA reduces the number of trainable parameters needing fine-tuning, making it possible to work with large models like Gemma 3 even on hardware with limited resources, all without compromising model accuracy.

微调Gemma 3使我们能够将这个先进的模型适应特定任务,优化其在特定领域应用中的性能。通过利用QLoRA(量化低秩适应)和Transformers,我们可以高效地微调Gemma 3,同时保持计算效率。QLoRA减少了需要微调的可训练参数数量,使得即使在资源有限的硬件上也能处理像Gemma 3这样的大型模型,且不会影响模型的准确性。

Fine-Tuning Gemma 3 VLM using QLoRA for LaTeX-OCR Dataset

In this post, we’ll show how to fine-tune Gemma 3 for Vision-Language Model (VLM) tasks, specifically generating LaTeX equations from images using the LaTeX_OCR dataset. We’ll cover dataset preparation, model configuration with QLoRA and PEFT (Parameter-Efficient-Fine-Tuning), and the fine-tuning process using TRL Library and SFTTrainer, giving you the tools to effectively fine-tune Gemma 3 for complex multimodal tasks.

在这篇文章中,我们将展示如何为 视觉语言模型 (VLM) 任务微调 Gemma 3,特别是如何使用 LaTeX_OCR 数据集 从图像生成 LaTeX 方程。我们将涵盖数据集准备、使用 QLoRA 和 PEFT (参数高效微调) 的模型配置,以及使用 TRL 库和 SFTTrainer 的微调过程,为您提供有效微调 Gemma 3 以应对复杂多模态任务的工具。

For fine-tuning Gemma 3 for VLM tasks, the architectural features mentioned below are key because they enable the model to effectively work with both text and images. For more details, you can read about the full architecture of Gemma 3 and its insights here.

为了对Gemma 3进行微调以适应VLM任务,下面提到的架构特征是关键,因为它们使模型能够有效地处理文本和图像。有关更多详细信息,您可以在这里阅读关于Gemma 3及其见解的完整架构。

  • SigLIP Vision Encoder: This encoder transforms images into token representations, making it possible for Gemma 3 to process both textual and visual information.

    SigLIP视觉编码器:该编码器将图像转换为令牌表示,使Gemma 3能够处理文本和视觉信息。

  • Grouped-Query Attention (GQA): It optimizes memory and computation by grouping attention heads and making the model more scalable.

    分组查询注意力(GQA):通过分组注意力头来优化内存和计算,使模型更具可扩展性。

  • Rotary Positional Embeddings (RoPE)...

开通本站会员,查看完整译文。

trang chủ - Wiki
Copyright © 2011-2025 iteam. Current version is 2.143.0. UTC+08:00, 2025-04-14 20:36
浙ICP备14020137号-1 $bản đồ khách truy cập$