Lyft和城市交通
Two pictures of how we move across the metropolis
两张关于我们如何在大都市中移动的图片
From: Alex Chin, Michael Jancsy, Shilpa Subrahmanyam, and Mark Huberty
来自Alex Chin, Michael Jancsy, Shilpa Subrahmanyam, and Mark Huberty
Lyft moves people through space and time. But where those people move, and why, is up to them. Lyft’s riders use our services to get to and from work, go out to dinner, visit family, and get to the airport. When and where they do so tells us a lot about urban mobility — whether and how the notions of neighborhood, geography, and landscape shape how people move through space.
Lyft在空间和时间上移动人们。但是,这些人在哪里移动,以及为什么移动,由他们自己决定。Lyft的乘客使用我们的服务来上下班、外出就餐、探亲以及去机场。他们在什么时候和什么地方这样做,告诉我们很多关于城市流动性的信息--邻里、地理和景观的概念是否以及如何塑造人们如何在空间中移动。
Here we share what we can learn from long-run patterns on Lyft’s operations in major US cities. We see that cities vary a lot internally in how people travel, where, and when. That diversity implies a need for a diverse range of products and services. But, strikingly, we also see how cities resemble each other — that sometimes, common patterns, like urban downtowns, look more like other cities’ downtowns than they do their companion suburbs.
在此,我们分享一下我们从Lyft在美国主要城市的运营的长期模式中可以学到的东西。我们看到,城市在人们的出行方式、地点和时间方面有很大的内部差异。这种多样性意味着需要多样化的产品和服务。但是,令人震惊的是,我们也看到了城市之间的相似性--有时,共同的模式,如城市的市中心,看起来更像其他城市的市中心,而不是其配套的郊区。
This paints a rich picture of how we live in time and space, and helps to shape a complex understanding of the transportation services that modern metropolitan areas need to function socially, economically, and culturally.
这描绘了我们如何在时间和空间上生活的丰富画面,并有助于形成对现代大都市地区在社会、经济和文化上运作所需的交通服务的复杂理解。
Two visions of mobility: where you start, and where you want to go
对流动的两种看法:你的起点和你想去的地方
Lyft rides paint many different pictures of urban mobility depending on what part of the trip we emphasize.
乘坐Lyft的人描绘了许多不同的城市交通图景,这取决于我们强调的旅行的哪一部分。
If we choose only pickup information — both where a trip starts, and when — we get a picture of the demand for mobility. We’ll notice, for instance, that demand in an office district clusters heav...