实验是整个Netflix的数据科学的一个主要重点
Martin Tingley with Wenjing Zheng, Simon Ejdemyr, Stephanie Lane, Colin McFarland, Andy Rhines, Sophia Liu, Mihir Tendulkar, Kevin Mercurio, Veronica Hannan, Ting-Po Lee
Martin Tingley与郑文静, Simon Ejdemyr, 斯蒂芬妮-莱恩, 科林-麦克法兰, 安迪-雷恩斯, 苏菲亚-刘, 米希尔-坦杜尔卡, 凯文-梅库里奥, 维罗妮卡-汉南, 李廷宝
Earlier posts in this series covered the basics of A/B tests (Part 1 and Part 2 ), core statistical concepts (Part 3 and Part 4), and how to build confidence in decisions based on A/B test results (Part 5). Here we describe the role of Experimentation and A/B testing within the larger Data Science and Engineering organization at Netflix, including how our platform investments support running tests at scale while enabling innovation. The subsequent and final post in this series will discuss the importance of the culture of experimentation within Netflix.
本系列的早期文章涵盖了A/B测试的基础知识(第一部分和第二部分),核心统计概念(第三部分和第四部分),以及如何建立基于A/B测试结果的决策信心(第五部分)。在这里,我们描述了实验和A/B测试在Netflix更大的数据科学和工程组织中的作用,包括我们的平台投资如何支持大规模的运行测试,同时实现创新。本系列的后续和最后一篇文章将讨论Netflix内部实验文化的重要性。
Experimentation and causal inference is one of the primary focus areas within Netflix’s Data Science and Engineering organization. To directly support great decision-making throughout the company, there are a number of data science teams at Netflix that partner directly with Product Managers, engineering teams, and other business units to design, execute, and learn from experiments. To enable scale, we’ve built, and continue to invest in, an internal experimentation platform (XP for short). And we intentionally encourage collaboration between the centralized experimentation platform and the data science teams that partner directly with Netflix business units.
实验和因果推理是Netflix的数据科学和工程组织的主要重点领域之一。为了直接支持整个公司的伟大决策,Netflix有许多数据科学团队直接与产品经理、工程团队和其他业务部门合作,设计、执行并从实验中学习。为了扩大规模,我们已经建立了一个内部实验平台(简称XP),并将继续进行投资。我们有意鼓励集中式实验平台和直接与Netflix业务部门合作的数据科学团队之间的合作。
Curious to learn more about other Data Science and Engineering functions at Netflix? To learn about Analytics and Viz Engineering, have a look at Analytics at Netflix: Who We Are ...