训练计算机视觉模型
- Data strategy is product strategy; especially in ML!
- 数据策略 就是 产品策略;尤其是在机器学习中!
- Getting started with ML is more accessible than you think (thanks in large part to this template).
- 开始使用 ML 比你想象的要容易得多(在很大程度上要感谢 这个模板)。
- Define the usecase first. Not starting with a clear end-goal leads to drift.
- 首先定义用例。不以明确的最终目标开始会导致偏离。
- ML is a mature field with a lot of learning and experimentation resources to lean on.
- 机器学习是一个成熟的领域,有很多学习和实验资源可以依赖。
Last week I came across a post by mfranzon about training a computer vision ML model on a laptop with just a few lines of Python.
上周我看到了一篇由 mfranzon 发布的帖子,内容是关于在笔记本电脑上用几行 Python 训练计算机视觉机器学习模型。
I’ve done a lot of experimenting with foundational models but hadn’t yet experimented with model training much. This seemed like a low-friction opportunity to go ‘up the stack’ and get some hands-on experience to develop better intuition on the topic.
我在基础模型上进行了很多实验,但还没有进行过多的模型训练实验。这似乎是一个低摩擦的机会,可以“向上堆栈”并获得一些实践经验,以便在这个主题上发展更好的直觉。
This post was written in an effort to be more intentional about documenting and sharing my experimentation. I haven’t done one of these in years so I’ll be shaking off some of the rust; bear with me.
这篇文章是为了更有意识地记录和分享我的实验而写的。我已经很多年没有做过这样的事情了,所以我会有些生疏;请多多包涵。
YOLO Training Template
YOLO 训练模板
Mfranzon was generous enough to post his training template here. The readme says it contains
Mfranzon 很慷慨地在这里发布了他的 训练模板。自述文件 说它包含
a template for training YOLO models on any Kaggle dataset…
一个在任何Kaggle数据集上训练YOLO模型的模板……
I’m still new to this so I started with some definitions:
我还很新,所以我从一些定义开始:
- You-Only-Look-Once (YOLO) refers to an object detection algorithm that “looks” at an image only once to find both bounding boxes and probabilities simultaneously (this blog from v7 was helpful).
- You-Only-Look-Once (YOLO)指的是一种目标检测算法,它“只看”一次图像,以同时找到边界框和概率(v7的这篇博客很有帮助)。
- Kaggle dataset just refers to any one of the many datasets hosted on the Kaggle platform. Kaggle is great resources for learning about ML.
- Kaggle 数据集 指的是托管在 Kaggle 平台上的众多数据集中的任何一个。Kaggle 是学习机器学习的绝佳资源。
Ok so now I have a good-enough underst...