Function calling

Enable models to fetch data and take actions.

Function calling provides a powerful and flexible way for OpenAI models to interface with your code or external services, and has two primary use cases:

Fetching Data Retrieve up-to-date information to incorporate into the model's response (RAG). Useful for searching knowledge bases and retrieving specific data from APIs (e.g. current weather data).
Taking Action Perform actions like submitting a form, calling APIs, modifying application state (UI/frontend or backend), or taking agentic workflow actions (like handing off the conversation).

Get weather

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
from openai import OpenAI

client = OpenAI()

tools = [{
 "type": "function",
 "function": {
 "name": "get_weather",
 "description": "Get current temperature for a given location.",
 "parameters": {
 "type": "object",
 "properties": {
 "location": {
 "type": "string",
 "description": "City and country e.g. Bogotá, Colombia"
 }
 },
 "required": [
 "location"
 ],
 "additionalProperties": False
 },
 "strict": True
 }
}]

completion = client.chat.completions.create(
 model="gpt-4o",
 messages=[{"role": "user", "content": "What is the weather like in Paris today?"}],
 tools=tools
)

print(completion.choices[0].message.tool_calls)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import { OpenAI } from "openai";

const openai = new OpenAI();

const tools = [{
 "type": "function",
 "function": {
 "name": "get_weather",
 "description": "Get current temperature for a given location.",
 "parameters": {
 "type": "object",
 "properties": {
 "location": {
 "type": "string",
 "description": "City and country e.g. Bogotá, Colombia"
 }
 },
 "required": [
 "location"
 ],
 "additionalProperties": false
 },
 "strict": true
 }
}];

const completion = await openai.chat.completions.create({
 model: "gpt-4o",
 messages: [{ role: "user", content: "What is the weather like in Paris today?" }],
 tools,
});

console.log(completion.choices[0].message.tool_calls);
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
curl https://api.openai.com/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-d '{
 "model": "gpt-4o",
 "messages": [
 {
 "role": "user",
 "content": "What is the weather like in Paris today?"
 }
 ],
 "tools": [
 {
 "type": "function",
 "function": {
 "name": "get_weather",
 "description": "Get current temperature for a given location.",
 "parameters": {
 "type": "object",
 "properties": {
 "location": {
 "type": "string",
 "description": "City and country e.g. Bogotá, Colombia"
 }
 },
 "required": [
 "location"
 ],
 "additionalProperties": false
 },
 "strict": true
 }
 }
 ]
}'
1
2
3
4
5
6
7
8
[{
 "id": "call_12345xyz",
 "type": "function",
 "function": {
 "name": "get_weather",
 "arguments": "{\"location\":\"Paris, France\"}"
 }
}]

Send email

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from openai import OpenAI

client = OpenAI()

tools = [{
 "type": "function",
 "function": {
 "name": "send_email",
 "description": "Send an email to a given recipient with a subject and message.",
 "parameters": {
 "type": "object",
 "properties": {
 "to": {
 "type": "string",
 "description": "The recipient email address."
 },
 "subject": {
 "type": "string",
 "description": "Email subject line."
 },
 "body": {
 "type": "string",
 "description": "Body of the email message."
 }
 },
 "required": [
 "to",
 "subject",
 "body"
 ],
 "additionalProperties": False
 },
 "strict": True
 }
}]

completion = client.chat.completions.create(
 model="gpt-4o",
 messages=[{"role": "user", "content": "Can you send an email to ilan@example.com and katia@example.com saying hi?"}],
 tools=tools
)

print(completion.choices[0].message.tool_calls)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import { OpenAI } from "openai";

const openai = new OpenAI();

const tools = [{
 "type": "function",
 "function": {
 "name": "send_email",
 "description": "Send an email to a given recipient with a subject and message.",
 "parameters": {
 "type": "object",
 "properties": {
 "to": {
 "type": "string",
 "description": "The recipient email address."
 },
 "subject": {
 "type": "string",
 "description": "Email subject line."
 },
 "body": {
 "type": "string",
 "description": "Body of the email message."
 }
 },
 "required": [
 "to",
 "subject",
 "body"
 ],
 "additionalProperties": false
 },
 "strict": true
 }
}];

const completion = await openai.chat.completions.create({
 model: "gpt-4o",
 messages: [{ role: "user", content: "Can you send an email to ilan@example.com and katia@example.com saying hi?" }],
 tools,
});

console.log(completion.choices[0].message.tool_calls);
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
curl https://api.openai.com/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-d '{
 "model": "gpt-4o",
 "messages": [
 {
 "role": "user",
 "content": "Can you send an email to ilan@example.com and katia@example.com saying hi?"
 }
 ],
 "tools": [
 {
 "type": "function",
 "function": {
 "name": "send_email",
 "description": "Send an email to a given recipient with a subject and message.",
 "parameters": {
 "type": "object",
 "properties": {
 "to": {
 "type": "string",
 "description": "The recipient email address."
 },
 "subject": {
 "type": "string",
 "description": "Email subject line."
 },
 "body": {
 "type": "string",
 "description": "Body of the email message."
 }
 },
 "required": [
 "to",
 "subject",
 "body"
 ],
 "additionalProperties": false
 },
 "strict": true
 }
 }
 ]
}'
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
[
 {
 "id": "call_9876abc",
 "type": "function",
 "function": {
 "name": "send_email",
 "arguments": "{\"to\":\"ilan@example.com\",\"subject\":\"Hello!\",\"body\":\"Just wanted to say hi\"}"
 }
 },
 {
 "id": "call_9876abc",
 "type": "function",
 "function": {
 "name": "send_email",
 "arguments": "{\"to\":\"katia@example.com\",\"subject\":\"Hello!\",\"body\":\"Just wanted to say hi\"}"
 }
 }
]

Search knowledge base

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
from openai import OpenAI

client = OpenAI()

tools = [{
 "type": "function",
 "function": {
 "name": "search_knowledge_base",
 "description": "Query a knowledge base to retrieve relevant info on a topic.",
 "parameters": {
 "type": "object",
 "properties": {
 "query": {
 "type": "string",
 "description": "The user question or search query."
 },
 "options": {
 "type": "object",
 "properties": {
 "num_results": {
 "type": "number",
 "description": "Number of top results to return."
 },
 "domain_filter": {
 "type": [
 "string",
 "null"
 ],
 "description": "Optional domain to narrow the search (e.g. 'finance', 'medical'). Pass null if not needed."
 },
 "sort_by": {
 "type": [
 "string",
 "null"
 ],
 "enum": [
 "relevance",
 "date",
 "popularity",
 "alphabetical"
 ],
 "description": "How to sort results. Pass null if not needed."
 }
 },
 "required": [
 "num_results",
 "domain_filter",
 "sort_by"
 ],
 "additionalProperties": False
 }
 },
 "required": [
 "query",
 "options"
 ],
 "additionalProperties": False
 },
 "strict": True
 }
}]

completion = client.chat.completions.create(
 model="gpt-4o",
 messages=[{"role": "user", "content": "Can you find information about ChatGPT in the AI knowledge base?"}],
 tools=tools
)

print(completion.choices[0].message.tool_calls)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import { OpenAI } from "openai";

const openai = new OpenAI();

const tools = [{
 "type": "function",
 "function": {
 "name": "search_knowledge_base",
 "description": "Query a knowledge base to retrieve relevant info on a topic.",
 "parameters": {
 "type": "object",
 "properties": {
 "query": {
 "type": "string",
 "description": "The user question or search query."
 },
 "options": {
 "type": "object",
 "properties": {
 "num_results": {
 "type": "number",
 "description": "Number of top results to return."
 },
 "domain_filter": {
 "type": [
 "string",
 "null"
 ],
 "description": "Optional domain to narrow the search (e.g. 'finance', 'medical'). Pass null if not needed."
 },
 "sort_by": {
 "type": [
 "string",
 "null"
 ],
 "enum": [
 "relevance",
 "date",
 "popularity",
 "alphabetical"
 ],
 "description": "How to sort results. Pass null if not needed."
 }
 },
 "required": [
 "num_results",
 "domain_filter",
 "sort_by"
 ],
 "additionalProperties": false
 }
 },
 "required": [
 "query",
 "options"
 ],
 "additionalProperties": false
 },
 "strict": true
 }
}];

const completion = await openai.chat.completions.create({
 model: "gpt-4o",
 messages: [{ role: "user", content: "Can you find information about ChatGPT in the AI knowledge base?" }],
 tools,
});

console.log(completion.choices[0].message.tool_calls);
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
curl https://api.openai.com/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $OPENAI_API_KEY" \
-d '{
 "model": "gpt-4o",
 "messages": [
 {
 "role": "user",
 "content": "Can you find information about ChatGPT in the AI knowledge base?"
 }
 ],
 "tools": [
 {
 "type": "function",
 "function": {
 "name": "search_knowledge_base",
 "description": "Query a knowledge base to retrieve relevant info on a topic.",
 "parameters": {
 "type": "object",
 "properties": {
 "query": {
 "type": "string",
 "description": "The user question or search query."
 },
 "options": {
 "type": "object",
 "properties": {
 "num_results": {
 "type": "number",
 "description": "Number of top results to return."
 },
 "domain_filter": {
 "type": [
 "string",
 "null"
 ],
 "description": "Optional domain to narrow the search (e.g. 'finance', 'medical'). Pass null if not needed."
 },
 "sort_by": {
 "type": [
 "string",
 "null"
 ],
 "enum": [
 "relevance",
 "date",
 "popularity",
 "alphabetical"
 ],
 "description": "How to sort results. Pass null if not needed."
 }
 },
 "required": [
 "num_results",
 "domain_filter",
 "sort_by"
 ],
 "additionalProperties": false
 }
 },
 "required": [
 "query",
 "options"
 ],
 "additionalProperties": false
 },
 "strict": true
 }
 }
 ]
}'
1
2
3
4
5
6
7
8
[{
 "id": "call_4567xyz",
 "type": "function",
 "function": {
 "name": "search_knowledge_base",
 "arguments": "{\"query\":\"What is ChatGPT?\",\"options\":{\"num_results\":3,\"domain_filter\":null,\"sort_by\":\"relevance\"}}"
 }
}]

You can extend the capabilities of OpenAI models by giving them access to tools, which can have one of two forms:

Function Calling Developer-defined code.
Hosted Tools
OpenAI-built tools. (e.g. file search, code interpreter)

Only available in the Assistants API.

|

This guide will cover how you can give the model access to your own functions through function calling. Based on the system prompt and messages, the model may decide to call these functions — instead of (or in addition to) generating text or audio.

You'll then execute the function code, send back the results, and the model will incorporate them into its final response.

Function Calling Diagram Steps

Let's look at the steps to allow a model to use a real get_weather function defined below:

1
2
3
4
5
6
import requests

def get_weather(latitude, longitude):
 response = requests.get(f"https://api.open-meteo.com/v1/forecast?latitude={latitude}&longitude={longitude}&current=temperature_2m,wind_speed_10m&hourly=temperature_2m,relative_humidity_2m,wind_speed_10m")
 data = response.json()
 return data['current']['temperature_2m']
1
2
3
4
5
async function getWeather(latitude, longitude) {
 const response = await fetch(`https://api.open-meteo.com/v1/forecast?latitude=${latitude}&longitude=${longitude}&current=temperature_2m,wind_speed_10m&hourly=temperature_2m,relative_humidity_2m,wind_speed_10m`);
 const data = await response.json();
 return data.current.temperature_2m;
}

Unlike the diagram earlier, this function expects precise latitude and longitude instead of a general location parameter. (However, our models can automatically determine the coordinates for many locations!)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
from openai import OpenAI
import json

client = OpenAI()

tools = [{
 "type": "function",
 "function": {
 "name": "get_weather",
 "description": "Get current temperature for provided coordinates in celsius.",
 "parameters": {
 "type": "object",
 "properties": {
 "latitude": {"type": "number"},
 "longitude": {"type": "number"}
 },
 "required": ["latitude", "longitude"],
 "additionalProperties": False
 },
 "strict": True
 }
}]

messages = [{"role": "user", "content": "What's the weather like in Paris today?"}]

completion = client.chat.completions.create(
 model="gpt-4o",
 messages=messages,
 tools=tools,
)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import { OpenAI } from "openai";

const openai = new OpenAI();

const tools = [{
 type: "function",
 function: {
 name: "get_weather",
 description: "Get current temperature for provided coordinates in celsius.",
 parameters: {
 type: "object",
 properties: {
 latitude: { type: "number" },
 longitude: { type: "number" }
 },
 required: ["latitude", "longitude"],
 additionalProperties: false
 },
 strict: true
 }
}];

const messages = [
 {
 role: "user",
 content: "What's the weather like in Paris today?"
 }
];

const completion = await openai.chat.completions.create({
 model: "gpt-4o",
 messages,
 tools
});
  • Model decides to call function(s) – model returns the name and input arguments.
1
2
3
4
5
6
7
8
[{
 "id": "call_12345xyz",
 "type": "function",
 "function": {
 "name": "get_weather",
 "arguments": "{\"latitude\":48.8566,\"longitude\":2.3522}"
 }
}]
1
2
3
4
tool_call = completion.choices[0].message.tool_calls[0]
args = json.loads(tool_call.function.arguments)

result = get_weather(args["latitude"], args["longitude"])
1
2
3
4
const toolCall = completion.choices[0].message.tool_calls[0];
const args = JSON.parse(toolCall.function.arguments);

const result = await get_weather(args.latitude, args.longitude);
  • Supply model with results – so it can incorporate them into its final response.
1
2
3
4
5
6
7
8
9
10
11
12
messages.append(completion.choices[0].message) # append model's function call message
messages.append({ # append result message
 "role": "tool",
 "tool_call_id": tool_call.id,
 "content": result
})

completion_2 = client.chat.completions.create(
 model="gpt-4o",
 messages=messages,
 tools=tools,
)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
messages.push(completion.choices[0].message); // append model's function call message
messages.push({ // append result message
 role: "tool",
 tool_call_id: toolCall.id,
 content: result.toString()
});

const completion2 = await openai.chat.completions.create({
 model: "gpt-4o",
 messages,
 tools
});

console.log(completion2.choices[0].message.content);
  • Model responds – incorporating the result in its output.
"The current temperature in Paris is 14°C (57.2°F)."

Functions can be set in the tools parameter of each API request inside a function object.

A function is defined by its schema, which informs the model what it does and what input arguments it expects. It comprises the following fields:

Field Description
name The function's name (e.g. get_weather)
description Details on when and how to use the function
parameters JSON schema defining the function's input arguments

Take a look at this example or generate your own below (or in our Playground).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
{
 "type": "function",
 "function": {
 "name": "get_weather",
 "description": "Retrieves current weather for the given location.",
 "parameters": {
 "type": "object",
 "properties": {
 "location": {
 "type": "string",
 "description": "City and country e.g. Bogotá, Colombia"
 },
 "units": {
 "type": "string",
 "enum": [
 "celsius",
 "fahrenheit"
 ],
 "description": "Units the temperature will be returned in."
 }
 },
 "required": [
 "location",
 "units"
 ],
 "additionalProperties": false
 },
 "strict": true
 }
}

Because the parameters are defined by a JSON schema, you can leverage many of its rich features like property types, enums, descriptions, nested objects, and, recursive objects.

(Optional) Function calling wth pydantic and zod

While we encourage you to define your function schemas directly, our SDKs have helpers to convert pydantic and zod objects into schemas. Not all pydantic and zod features are supported.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
from openai import OpenAI, pydantic_function_tool
from pydantic import BaseModel, Field

client = OpenAI()

class GetWeather(BaseModel):
 location: str = Field(
 ...,
 description="City and country e.g. Bogotá, Colombia"
 )

tools = [pydantic_function_tool(GetWeather)]

completion = client.chat.completions.create(
 model="gpt-4o",
 messages=[{"role": "user", "content": "What's the weather like in Paris today?"}],
 tools=tools
)

print(completion.choices[0].message.tool_calls)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
import OpenAI from "openai";
import { z } from "zod";
import { zodFunction } from "openai/helpers/zod";

const openai = new OpenAI();

const GetWeatherParameters = z.object({
 location: z.string().describe("City and country e.g. Bogotá, Colombia"),
});

const tools = [
 zodFunction({ name: "getWeather", parameters: GetWeatherParameters }),
];

const messages = [
 { role: "user", content: "What's the weather like in Paris today?" },
];

const response = await openai.chat.completions.create({
 model: "gpt-4o",
 messages,
 tools,
});

console.log(response.choices[0].message.tool_calls);
  1. Write clear and detailed function names, parameter descriptions, and instructions.

    • Explicitly describe the purpose of the function and each parameter (and its format), and what the output represents.
    • Use the system prompt to describe when (and when not) to use each function. Generally, tell the model exactly what to do.
    • Include examples and edge cases, especially to rectify any recurring failures. (Note: Adding examples may hurt performance for reasoning models.)
  2. Apply software engineering best practices.

    • Make the functions obvious and intuitive. (principle of least surprise)
    • Use enums and object structure to make invalid states unrepresentable. (e.g. toggle_light(on: bool, off: bool) allows for invalid calls)
    • Pass the intern test. Can an intern/human correctly use the function given nothing but what you gave the model? (If not, what questions do they ask you? Add the answers to the prompt.)
  3. Offload the burden from the model and use code where possible.

    • Don't make the model fill arguments you already know. For example, if you already have an order_id based on a previous menu, don't have an order_id param – instead, have no params submit_refund() and pass the order_id with code.
    • Combine functions that are always called in sequence. For example, if you always call mark_location() after query_location(), just move the marking logic into the query function call.
  4. Keep the number of functions small for higher accuracy.

    • Evaluate your performance with different numbers of functions.
    • Aim for fewer than 20 functions at any one time, though this is just a soft suggestion.
  5. Leverage OpenAI resources.

    • Generate and iterate on function schemas in the Playground.
    • Consider fine-tuning to increase function calling accuracy for large numbers of functions or difficult tasks. (cookbook)

Under the hood, functions are injected into the system message in a syntax the model has been trained on. This means functions count against the model's context limit and are billed as input tokens. If you run into token limits, we suggest limiting the number of functions or the length of the descriptions you provide for function parameters.

It is also possible to use fine-tuning to reduce the number of tokens used if you have many functions defined in your tools specification.

When the model calls a function, you must execute it and return the result. Since model responses can include zero, one, or multiple calls, it is best practice to assume there are several.

The response has an array of tool_calls, each with an id (used later to submit the function result) and a function containing a name and JSON-encoded arguments.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
[
 {
 "id": "call_12345xyz",
 "type": "function",
 "function": {
 "name": "get_weather",
 "arguments": "{\"location\":\"Paris, France\"}"
 }
 },
 {
 "id": "call_67890abc",
 "type": "function",
 "function": {
 "name": "get_weather",
 "arguments": "{\"location\":\"Bogotá, Colombia\"}"
 }
 },
 {
 "id": "call_99999def",
 "type": "function",
 "function": {
 "name": "send_email",
 "arguments": "{\"to\":\"bob@email.com\",\"body\":\"Hi bob\"}"
 }
 }
]
1
2
3
4
5
6
7
8
9
10
for tool_call in completion.choices[0].message.tool_calls:
 name = tool_call.function.name
 args = json.loads(tool_call.function.arguments)

 result = call_function(name, args)
 messages.append({
 "role": "tool",
 "tool_call_id": tool_call.id,
 "content": result
 })
1
2
3
4
5
6
7
8
9
10
11
for (const toolCall of completion.choices[0].message.tool_calls) {
 const name = toolCall.function.name;
 const args = JSON.parse(toolCall.function.arguments);

 const result = callFunction(name, args);
 messages.push({
 role: "tool",
 tool_call_id: toolCall.id,
 content: result.toString()
 });
}

In the example above, we have a hypothetical call_function to route each call. Here’s a possible implementation:

1
2
3
4
5
def call_function(name, args):
 if name == "get_weather":
 return get_weather(**args)
 if name == "send_email":
 return send_email(**args)
1
2
3
4
5
6
7
8
const callFunction = async (name, args) => {
 if (name === "get_weather") {
 return getWeather(args.latitude, args.longitude);
 }
 if (name === "send_email") {
 return sendEmail(args.to, args.body);
 }
};

A result must be a string, but the format is up to you (JSON, error codes, plain text, etc.). The model will interpret that string as needed.

If your function has no return value (e.g. send_email), simply return a string to indicate success or failure. (e.g. "success")

After appending the results to your messages, you can send them back to the model to get a final response.

1
2
3
4
5
completion = client.chat.completions.create(
 model="gpt-4o",
 messages=messages,
 tools=tools,
)
1
2
3
4
5
const completion = await openai.chat.completions.create({
 model: "gpt-4o",
 messages,
 tools
});
"It's about 15°C in Paris, 18°C in Bogotá, and I've sent that email to Bob."

By default the model will determine when and how many tools to use. You can force specific behavior with the tool_choice parameter.

  1. Auto: (Default) Call zero, one, or multiple functions. tool_choice: "auto"
  2. Required: Call one or more functions. tool_choice: "required"
  3. Forced Function: Call exactly one specific function. tool_choice: {"type": "function", "function": {"name": "get_weather"}}

Function Calling Diagram Steps

You can also set tool_choice to "none" to imitate the behavior of passing no functions.

The model may choose to call multiple functions in a single turn. You can prevent this by setting parallel_tool_calls to false, which ensures exactly zero or one tool is called.

Note: Currently, if the model calls multiple functions in one turn then strict mode will be disabled for those calls.

Setting strict to true will ensure function calls reliably adhere to the function schema, instead of being best effort. We recommend always enabling strict mode.

Under the hood, strict mode works by leveraging our structured outputs feature and therefore introduces a couple requirements:

  1. additionalProperties must be set to false for each object in the parameters.
  2. All fields in properties must be marked as required.

You can denote optional fields by adding null as a type option (see example below).

Strict mode enabled

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
{
 "type": "function",
 "function": {
 "name": "get_weather",
 "description": "Retrieves current weather for the given location.",
 "strict": true,
 "parameters": {
 "type": "object",
 "properties": {
 "location": {
 "type": "string",
 "description": "City and country e.g. Bogotá, Colombia"
 },
 "units": {
 "type": ["string", "null"],
 "enum": ["celsius", "fahrenheit"],
 "description": "Units the temperature will be returned in."
 }
 },
 "required": ["location", "units"],
 "additionalProperties": false
 }
 }
}

Strict mode disabled

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
{
 "type": "function",
 "function": {
 "name": "get_weather",
 "description": "Retrieves current weather for the given location.",
 "parameters": {
 "type": "object",
 "properties": {
 "location": {
 "type": "string",
 "description": "City and country e.g. Bogotá, Colombia"
 },
 "units": {
 "type": "string",
 "enum": ["celsius", "fahrenheit"],
 "description": "Units the temperature will be returned in."
 }
 },
 "required": ["location"],
 }
 }
}

All schemas generated in the playground have strict mode enabled.

While we recommend you enable strict mode, it has a few limitations:

  1. Some features of JSON schema are not supported. (See supported schemas.)
  2. Schemas undergo additional processing on the first request (and are then cached). If your schemas vary from request to request, this may result in higher latencies.
  3. Schemas are cached for performance, and are not eligible for zero data retention.

Streaming can be used to surface progress by showing which function is called as the model fills its arguments, and even displaying the arguments in real time.

Streaming function calls is very similar to streaming regular responses: you set stream to true and get chunks with delta objects.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
from openai import OpenAI

client = OpenAI()

tools = [{
 "type": "function",
 "function": {
 "name": "get_weather",
 "description": "Get current temperature for a given location.",
 "parameters": {
 "type": "object",
 "properties": {
 "location": {
 "type": "string",
 "description": "City and country e.g. Bogotá, Colombia"
 }
 },
 "required": ["location"],
 "additionalProperties": False
 },
 "strict": True
 }
}]

stream = client.chat.completions.create(
 model="gpt-4o",
 messages=[{"role": "user", "content": "What's the weather like in Paris today?"}],
 tools=tools,
 stream=True
)

for chunk in stream:
 delta = chunk.choices[0].delta
 print(delta.tool_calls)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import { OpenAI } from "openai";

const openai = new OpenAI();

const tools = [{
 "type": "function",
 "function": {
 "name": "get_weather",
 "description": "Get current temperature for a given location.",
 "parameters": {
 "type": "object",
 "properties": {
 "location": {
 "type": "string",
 "description": "City and country e.g. Bogotá, Colombia"
 }
 },
 "required": ["location"],
 "additionalProperties": false
 },
 "strict": true
 }
}];

const stream = await openai.chat.completions.create({
 model: "gpt-4o",
 messages: [{ role: "user", content: "What's the weather like in Paris today?" }],
 tools,
 stream: true
});

for await (const chunk of stream) {
 const delta = chunk.choices[0].delta;
 console.log(delta.tool_calls);
}
1
2
3
4
5
6
7
8
9
[{"index": 0, "id": "call_DdmO9pD3xa9XTPNJ32zg2hcA", "function": {"arguments": "", "name": "get_weather"}, "type": "function"}]
[{"index": 0, "id": null, "function": {"arguments": "{\"", "name": null}, "type": null}]
[{"index": 0, "id": null, "function": {"arguments": "location", "name": null}, "type": null}]
[{"index": 0, "id": null, "function": {"arguments": "\":\"", "name": null}, "type": null}]
[{"index": 0, "id": null, "function": {"arguments": "Paris", "name": null}, "type": null}]
[{"index": 0, "id": null, "function": {"arguments": ",", "name": null}, "type": null}]
[{"index": 0, "id": null, "function": {"arguments": " France", "name": null}, "type": null}]
[{"index": 0, "id": null, "function": {"arguments": "\"}", "name": null}, "type": null}]
null

Instead of aggregating chunks into a single content string, however, you're aggregating chunks into an encoded arguments JSON object.

When the model calls one or more functions the tool_calls field of each delta will be populated. Each tool_call contains the following fields:

Field Description
index Identifies which function call the delta is for
id Tool call id.
function Function call delta (name and arguments)
type Type of tool_call (always function for function calls)

Many of these fields are only set for the first delta of each tool call, like id, function.name, and type.

Below is a code snippet demonstrating how to aggregate the deltas into a final tool_calls object.

1
2
3
4
5
6
7
8
9
10
final_tool_calls = {}

for chunk in stream:
 for tool_call in chunk.choices[0].delta.tool_calls or []:
 index = tool_call.index

 if index not in final_tool_calls:
 final_tool_calls[index] = tool_call

 final_tool_calls[index].function.arguments += tool_call.function.arguments
1
2
3
4
5
6
7
8
9
10
11
12
13
14
const finalToolCalls = {};

for await (const chunk of stream) {
 const toolCalls = chunk.choices[0].delta.tool_calls || [];
 for (const toolCall of toolCalls) {
 const { index } = toolCall;

 if (!finalToolCalls[index]) {
 finalToolCalls[index] = toolCall;
 }

 finalToolCalls[index].function.arguments += toolCall.function.arguments;
 }
}
1
2
3
4
5
6
7
8
{
 "index": 0,
 "id": "call_RzfkBpJgzeR0S242qfvjadNe",
 "function": {
 "name": "get_weather",
 "arguments": "{\"location\":\"Paris, France\"}"
 }
}

ホーム - Wiki
Copyright © 2011-2025 iteam. Current version is 2.142.0. UTC+08:00, 2025-02-23 07:16
浙ICP备14020137号-1 $お客様$