驱动Dropbox Dash实时AI的特征存储内部

Dropbox Dash uses AI to understand questions about your files, work chats, and company content, bringing everything together in one place for deeper, more focused work. With tens of thousands of potential work documents to consider, both search and agents rely on a ranking system powered by real-time machine learning to find the right files fast. At the core of that ranking in Dash is our feature store, a system that manages and delivers the data signals (“features”) our models use to predict relevance. 

Dropbox Dash 使用 AI 理解有关您的文件、工作聊天和公司内容的问题,将所有内容集中在一个地方,以便进行更深入、更专注的工作。在考虑数以万计的潜在工作文档时,搜索和代理都依赖于由实时机器学习驱动的排名系统,以快速找到正确的文件。在 Dash 中,该排名的核心是我们的 特征存储,这是一个管理和交付我们的模型用于预测相关性的数据信号(“特征”)的系统。

To help users find exactly what they need, Dash has to read between the lines of user behavior across file types, company content, and the messy, fragmented realities of collaboration. Then it has to surface the most relevant documents, images, and conversations when and how they’re needed. The feature store is a critical part of how we rank and retrieve the right context across your work. It’s built to serve features quickly, keep pace as user behavior changes, and let engineers move fast from idea to production. (For more on how feature stores connect to context engineering in Dash, check out our deep dive on context engineering right here.)

为了帮助用户找到他们所需的确切内容,Dash必须在文件类型、公司内容和协作的混乱、碎片化现实之间解读用户行为。然后,它必须在需要时以合适的方式呈现最相关的文档、图像和对话。特征存储是我们在你的工作中排名和检索正确上下文的关键部分。它旨在快速提供特征,跟上用户行为的变化,并让工程师能够迅速从想法转向生产。(有关特征存储如何与Dash中的上下文工程连接的更多信息,请查看我们的 上下文工程深度探讨。)

In this post, we’ll walk through how we built the feature store behind Dash’s ranking system, why off-the-shelf solutions didn’t fit, how we designed for speed and scale, and what it takes to keep features fresh as user behavior changes. Along the way, we’ll share the tradeoffs we made and the lessons that shaped our approach.

在这篇文章中,我们将介绍如何构建Dash排名系统背后的特征存储,为什么现成的解决方案不适合,如何设计以实现速度和规模,以及在用户行为变化时保持特征新鲜所需的条件。在此过程中,我们将分享我们所做的权衡和塑造我们方法的经验教训。

Dropbox Dash: The AI teammate that understands your work

Dropb...

开通本站会员,查看完整译文。

inicio - Wiki
Copyright © 2011-2025 iteam. Current version is 2.148.2. UTC+08:00, 2025-12-23 10:10
浙ICP备14020137号-1 $mapa de visitantes$