Manas HNSW Streaming Filters

摘要

Embedding-based retrieval is a core center piece of our recommendations engine at Pinterest. We support a myriad of use cases, from retrieval based on content similarity to learned retrieval. It’s powered by our in-house search engine — Manas — which provides Approximate Nearest Neighbor (ANN) search as a service, primarily using Hierarchical Navigable Small World graphs (HNSW).

While traditional token-based search retrieves documents on term matching on a tree of terms with logical connectives like ANDs and ORs, ANN search retrieves based on embedding similarity. Oftentimes we’d like to do a hybrid search query that combines the two. For example, “find similar products to this pair of shoes that are less than $100, rated 4 stars or more, and ship to the UK.” This is a common problem, and it’s not entirely unsolved, but the solutions each have their own caveats and trade-offs.

欢迎在评论区写下你对这篇文章的看法。

评论

Home - Wiki
Copyright © 2011-2024 iteam. Current version is 2.139.0. UTC+08:00, 2024-12-23 10:06
浙ICP备14020137号-1 $Map of visitor$