Unlocking Efficiency and Performance: Navigating the Spark 3 and EMR 6 Upgrade Journey at Slack

摘要

Slack Data Engineering recently migrated their data workload from EMR 5 to EMR 6, using Spark 3 as the processing engine. The migration aimed to improve performance, enhance security, and achieve cost savings. They faced challenges related to supporting the same Hive catalog, provisioning different EMR clusters, controlling costs, and supporting different versions of job libraries. They used various tools and techniques like the Hive Schema Tool, Bazel, and the Airflow Spark operator to address these challenges. The migration allowed them to leverage the benefits of Spark 3 and improve their data processing capabilities. They also performed post-migration data validation to ensure an exact data match between the tables and made use of Trino and their in-house Python framework for detailed analysis. They continuously monitored the runtime of their pipelines and made necessary adjustments.

欢迎在评论区写下你对这篇文章的看法。

评论

首页 - Wiki
Copyright © 2011-2024 iteam. Current version is 2.137.1. UTC+08:00, 2024-11-22 10:31
浙ICP备14020137号-1 $访客地图$