Druid Deprecation and ClickHouse Adoption at Lyft

摘要

ClickHouse是一个开源的高性能面向列的数据库,用于在线分析处理。Lyft决定扩展ClickHouse并废弃Druid,将现有的Druid用例迁移到ClickHouse。ClickHouse相对于Druid具有简化的基础设施管理、较低的学习曲线、数据去重、较低的成本和专门的引擎等优势。Lyft通过基准测试和性能分析来评估ClickHouse,并进行了平滑的迁移过程。他们在Lyft使用ClickHouse的架构是基于Altinity的Kubernetes Operator,在HA模式下运行,使用AWS M5类型的计算实例和EBS卷进行存储。数据的摄取主要通过Kafka和Kinesis进行,并通过内部代理和可视化工具进行读取查询。Lyft在ClickHouse上处理大量数据,并对查询性能进行了优化,包括使用排序键、跳过索引和投影等技术。他们在ClickHouse上处理多个用例,包括市场健康、政策报告、花费追踪、预测和实验等。然而,在使用ClickHouse过程中也遇到了一些问题,如查询缓存性能和与Kafka集成的问题。此外,Lyft计划进一步扩展ClickHouse的使用,包括稳定批处理架构和使用流式Kinesis摄取。他们还计划将Flink SQL迁移到ClickHouse,并考虑使用ClickHouse Keeper替代ZooKeeper以减少外部组件依赖。

欢迎在评论区写下你对这篇文章的看法。

评论

首页 - Wiki
Copyright © 2011-2024 iteam. Current version is 2.139.0. UTC+08:00, 2024-12-26 17:58
浙ICP备14020137号-1 $访客地图$