话题公司 › dropbox

公司:dropbox

Dropbox 于2007年5月由麻省理工学院学生德鲁·休斯顿和阿拉什·费道斯创立,时名Evenflow, Inc.,于2009年10月更名为Dropbox,总部位于美国加利福尼亚州旧金山。

Dropbox通过免费增值模式营运,提供线上存储服务,通过云计算实现互联网文件同步,用户可以存储并共享文件和文件夹。在云存储领域的竞争对手包括谷歌公司的Google Drive、微软公司的OneDrive和亚马逊公司的AWS等。

Dropbox于2018年3月23日在美国纳斯达克上市交易,股票代码是DBX,发行3600万股股票,发行价21美元。Dropbox在2017年营业收入11.1亿美元,注册用户超过5亿,净亏损1.117亿美元。

Lossless compression with Brotli in Rust for a bit of Pied Piper on the backend

In HBO’s Silicon Valley, lossless video compression plays a pivotal role for Pied Piper as they struggle to stream HD content at high speed.

Inspired by Pied Piper, we created our own version of their algorithm Pied Piper at Hack Week. In fact, we’ve extended that work and have a bit-exact, lossless media compression algorithm that achieves extremely good results on a wide array of images. (Stay tuned for more on that!)

However, to help our users sync and collaborate faster, we also need to work with a standardized compression format that already ships with most browsers. In that vein, we’ve been working on open source improvements to the Brotli codec, which will make it possible to ship bits to our business customers using 4.4% less of their bandwidth than through gzip.

Rewriting the heart of our sync engine

Over the past four years, we've been working hard on rebuilding our desktop client's sync engine from scratch. The sync engine is the magic behind the Dropbox folder on your desktop computer, and it's one of the oldest and most important pieces of code at Dropbox. We're proud to announce today that we've shipped this new sync engine (codenamed "Nucleus") to all Dropbox users.

Rewriting the sync engine was really hard, and we don’t want to blindly celebrate it, because in many environments it would have been a terrible idea. It turned out that this was an excellent idea for Dropbox but only because we were very thoughtful about how we went about this process. In particular, we’re going to share reflections on how to think about a major software rewrite and highlight the key initiatives that made this project a success, like having a very clean data model.

Why we built a custom Rust library for Capture

Dropbox Capture is a new visual communication tool designed to make it easy for teams to asynchronously share their work using screen recordings, video messages, screenshots, or GIFs. There's no formal onboarding required, and you can start sharing your ideas in seconds. In fact, simplicity is key to the Capture experience, and it's a value that also extends down to the development of Capture’s underlying code.

Optimizing payments with machine learning

It’s probably happened to you at some point: You go to use a service for which you believe you’ve got a paid subscription, only to find that it’s been canceled for non-payment. That’s not only bad for you the customer: It causes negative feelings about the brand, it disrupts what should be a steady flow of revenue to the business, and a customer who finds themselves shut off might decide not to come back.

At Dropbox, we found that applying machine learning to our handling of customer payments has made us better at keeping subscribers happily humming along.

How image search works at Dropbox

Photos are among the most common types of files in Dropbox, but searching for them by filename is even less productive than it is for text-based files. When you're looking for that photo from a picnic a few years ago, you surely don't remember that the filename set by your camera was 2017-07-04 12.37.54.jpg.

Instead, you look at individual photos, or thumbnails of them, and try to identify objects or aspects that match what you’re searching for—whether that’s to recover a photo you’ve stored, or perhaps discover the perfect shot for a new campaign in your company’s archives. Wouldn’t it be great if Dropbox could pore through all those images for you instead, and call out those which best match a few descriptive words that you dictated? That’s pretty much what our image search does.

In this post we’ll describe the core idea behind our image content search method, based on techniques from machine learning, then discuss how we built a performant implementation on Dropbox’s existing search infrastructure.

Detecting memory leaks in Android applications

当应用程序为一个对象分配内存,但当该对象不再使用时,却没有释放内存时,就会发生内存泄漏。随着时间的推移,泄漏的内存会不断累积,导致应用程序性能不佳,甚至崩溃。泄漏可能发生在任何程序和任何平台上,但由于活动生命周期的复杂性,它们在Android应用程序中特别普遍。最近的Android模式,如ViewModel和LifecycleObserver可以帮助避免内存泄漏,但如果你遵循旧的模式或不知道要注意什么,很容易让错误溜走。

Keeping sync fast with automated performance regression detection

通过自动性能回归检测来保持同步的速度

Broccoli: Syncing faster by syncing less

Dropbox syncs petabytes of data every day across millions of desktop clients. It is vital that we constantly improve the sync experience for our users, to increase our users’ productivity in their…

How we migrated Dropbox from Nginx to Envoy

In this blogpost we’ll talk about the old Nginx-based traffic infrastructure, its pain points, and the benefits we gained by migrating to Envoy. We’ll compare Nginx to Envoy across many software…

Mental models for designers

Curious about product design at Dropbox? Here’s a look at tools we use for solving problems, making decisions, and communicating ideas.

Optimizing web servers for high throughput and low latency

This is an expanded version of my talk at NginxConf 2017 on September 6, 2017. As an SRE on the Dropbox Traffic Team, I’m responsible for our Edge network: its reliability, performance, and…

如何达到facebook发版速度:Dropbox灰度发布平台系统架构

大型互联网公司推出新功能之前,会选择一小部分用户进行灰度及 A/B 测试,并根据这些反馈对功能进行改进。知名的有 facebook 的 Gatekeeper,LinkedIn 的 XLNT 等,最近 Dropbox 也公布了其灰度发布平台。

Dropbox是如何安全地存储用户帐号密码的?

加密和破解是一场你追我赶的长期斗争。Dropbox作为一个应用范围很广的云存储解决方案,他们是如何保证用户的密码安全的呢?

首页 - Wiki
Copyright © 2011-2024 iteam. Current version is 2.124.0. UTC+08:00, 2024-04-26 09:26
浙ICP备14020137号-1 $访客地图$