Using Fuzzy Matching to Search by Sound with Python
Searching for a person's name in a database is a unique challenge. Depending on the source and age of the data, you may not be able to count on the spelling of the name being correct, or even the same name being spelled the same way when it appears more than once. Discrepancies between stored data and search terms may be introduced due to personal choice or cultural differences in spellings, homophones, transcription errors, illiteracy, or simply lack of standardized spellings during some time periods. These sorts of problems are especially prevalent in transcriptions of handwritten historical records used by historians, genealogists, and other researchers.
A common way to solve the string-search problem is to look for values that are "close" to the same as the search target. Using a traditional fuzzy match algorithm to compute the closeness of two arbitrary strings is expensive, though, and it isn't appropriate for searching large data sets. A better solution is to compute hash values for entries in the database in advance, and several special hash algorithms have been created for this purpose. These phonetic hash algorithms allow you to compare two words or names based on how they sound, rather than the precise spelling.
Early Efforts: Soundex
One such algorithm is Soundex, developed by Margaret K. Odell and Robert C. Russell in the early 1900s. The Soundex algorithm appears frequently in genealogical contexts because it's associated with the U.S. Census and is specifically designed to encode names. A Soundex hash value is calculated by using the first letter of the name and converting the consonants in the rest of the name to digits by using a simple lookup table. Vowels and duplicate encoded values are dropped, and the result is padded up to—or truncated down to—four characters.
The Fuzzy library includes a Soundex implementation for Python programs:
#!/usr/bin/env python import fuzzy names = [ 'Catherine', 'Katherine', 'Katarina', 'Johnathan', 'Jonathan', 'John', 'Teresa', 'Theresa', 'Smith', 'Smyth', 'Jessica', 'Joshua', ] soundex = fuzzy.Soundex(4) for n in names: print '%-10s' % n, soundex(n)
The output of show_soundex.py demonstrates that some of the names with similar sounds are encoded with the same hash value, but the results are not ideal:
$ python show_soundex.py Catherine C365 Katherine K365 Katarina K365 Johnathan J535 Jonathan J535 John J500 Teresa T620 Theresa T620 Smith S530 Smyth S530 Jessica J200 Joshua J200
In this example, the variations Theresa and Teresa both produce the same Soundex hash, but Catherine and Katherine start with a different letter; even though they sound the same, the hash outputs are different. The last two names, Jessica and Joshua, are not related at all but are given the same hash value because the letters J, S, and C all map to the digit 2, and the algorithm removes duplicates. These types of failures illustrate a major shortcoming of Soundex.
Beyond English: NYSIIS
Algorithms developed after Soundex use different encoding schemes, either building on Soundex by tweaking the lookup table or starting from scratch with their own rules. All of them process phonemes differently in an attempt to improve accuracy. For example, in the 1970s, the New York State Identification and Intelligence System (NYSIIS) algorithm was published by Robert L. Taft. NYSIIS was originally used by what is now the New York State Division of Criminal Justice Services to help identify people in their database. It produces better results than Soundex because it takes special care to handle phonemes that occur in European and Hispanic surnames.
#!/usr/bin/env python import fuzzy names = [ 'Catherine', 'Katherine', 'Katarina', 'Johnathan', 'Jonathan', 'John', 'Teresa', 'Theresa', 'Smith', 'Smyth', 'Jessica', 'Joshua', ] for n in names: print '%-10s' % n, fuzzy.nysiis(n)
The output of show_nysiis.py is better than the results from Soundex with our sample data:
$ python show_nysiis.py Catherine CATARAN Katherine CATARAN Katarina CATARAN Johnathan JANATAN Jonathan JANATAN John JAN Teresa TARAS Theresa TARAS Smith SNATH Smyth SNATH Jessica JASAC Joshua JAS
In this case, Catherine, Katherine, and Katarina all map to the same hash value. The incorrect match of Jessica and Joshua is also eliminated because more of the letters from the names are used in the NYSIIS hash values.
A New Approach: Metaphone
Metaphone, published in 1990 by Lawrence Philips, is another algorithm that improves on earlier systems such as Soundex and NYSIIS. The Metaphone algorithm is significantly more complicated than the others because it includes special rules for handling spelling inconsistencies and for looking at combinations of consonants in addition to some vowels. An updated version of the algorithm, called Double Metaphone, goes even further by adding rules for handling some spellings and pronunciations from languages other than English.
#!/usr/bin/env python import fuzzy names = [ 'Catherine', 'Katherine', 'Katarina', 'Johnathan', 'Jonathan', 'John', 'Teresa', 'Theresa', 'Smith', 'Smyth', 'Jessica', 'Joshua', ] dmetaphone = fuzzy.DMetaphone(4) for n in names: print '%-10s' % n, dmetaphone(n)
In addition to having a broader set of encoding rules, Double Metaphone generates two alternate hashes for each input word. This gives the caller the ability to present search results with two levels of precision. In the results from the sample program, Catherine and Katherine have the same primary hash value. Their secondary hash value is the same as the primary hash for Katarina, finding the match that Soundex didn't, but giving it less weight than the results from NYSIIS implied.
$ python show_dmetaphone.py Catherine ['K0RN', 'KTRN'] Katherine ['K0RN', 'KTRN'] Katarina ['KTRN', None] Johnathan ['JN0N', 'ANTN'] Jonathan ['JN0N', 'ANTN'] John ['JN', 'AN'] Teresa ['TRS', None] Theresa ['0RS', 'TRS'] Smith ['SM0', 'XMT'] Smyth ['SM0', 'XMT'] Jessica ['JSK', 'ASK'] Joshua ['JX', 'AX']
Applying Phonetic Searches
Using phonetic searches in your application is straightforward, but may require adding extensions to the database server or bundling a third-party library with your application. MySQL, PostgreSQL, SQLite, and Microsoft SQL Server all support Soundex through a string function that can be invoked directly in queries. PostgreSQL also includes functions to calculate hashes using the original Metaphone algorithm and Double Metaphone.
Standalone implementations for all of the algorithms also are available for major programming languages such as Python, PHP, Ruby, Perl, C/C++, and Java. These libraries can be used with databases that don't have support for phonetic hash functions built in, such as MongoDB. For example, this script loads a series of names into a database, saving each hash value as a precomputed value to make searching easier later:
#!/usr/bin/env python import argparse import fuzzy from pymongo import Connection parser = argparse.ArgumentParser(description='Load names into the database') parser.add_argument('name', nargs='+') args = parser.parse_args() c = Connection() db = c.phonetic_search dmetaphone = fuzzy.DMetaphone() soundex = fuzzy.Soundex(4) for n in args.name: # Compute the hashes. Save soundex # and nysiis as lists to be consistent # with dmetaphone return type. values = {'_id':n, 'name':n, 'soundex':[soundex(n)], 'nysiis':[fuzzy.nysiis(n)], 'dmetaphone':dmetaphone(n), } print 'Loading %s: %s, %s, %s' % \ (n, values['soundex'][0], values['nysiis'][0], values['dmetaphone']) db.people.update({'_id':n}, values, True, # insert if not found False, )
Run mongodb_load.py from the command line to save names for retrieval later:
$ python mongodb_load.py Jonathan Johnathan Joshua Jessica Loading Jonathan: J535, JANATAN, ['JN0N', 'ANTN'] Loading Johnathan: J535, JANATAN, ['JN0N', 'ANTN'] Loading Joshua: J200, JAS, ['JX', 'AX'] Loading Jessica: J200, JASAC, ['JSK', 'ASK'] $ python mongodb_load.py Catherine Katherine Katarina Loading Catherine: C365, CATARAN, ['K0RN', 'KTRN'] Loading Katherine: K365, CATARAN, ['K0RN', 'KTRN'] Loading Katarina: K365, CATARAN, ['KTRN', None]
The search program mongodb_search.py lets the user select a hash function and then constructs a MongoDB query to find all names with a hash value matching the input name.
#!/usr/bin/env python import argparse import fuzzy from pymongo import Connection ENCODERS = { 'soundex':fuzzy.Soundex(4), 'nysiis':fuzzy.nysiis, 'dmetaphone':fuzzy.DMetaphone(), } parser = argparse.ArgumentParser(description='Search for a name in the database') parser.add_argument('algorithm', choices=('soundex', 'nysiis', 'dmetaphone')) parser.add_argument('name') args = parser.parse_args() c = Connection() db = c.phonetic_search encoded_name = ENCODERS[args.algorithm](args.name) query = {args.algorithm:encoded_name} for person in db.people.find(query): print person['name']
In some of these sample cases, the extra values in the result set are desirable because they're valid matches. On the other hand, the Soundex search for Joshua returns the unrelated value Jessica again. Although Soundex produces poor results when compared to the other algorithms, it's still used in many cases because it's built into the database server. Its simplicity also means that it's faster than the NYSIIS or Double Metaphone. In situations where the results are good enough, its speed may be a deciding factor in selecting it.
$ python mongodb_search.py soundex Katherine Katherine Katarina $ python mongodb_search.py nysiis Katherine Catherine Katherine Katarina $ python mongodb_search.py soundex Joshua Joshua Jessica $ python mongodb_search.py nysiis Joshua Joshua
Final Thoughts
I hope that this article has demonstrated the power that phonetic hash algorithms can add to the search features of your application, and the ease with which you can implement them. Selecting the right algorithm to use will depend on the nature of the data and the types of searches you're performing. If the right algorithm isn't clear from the data available, it may be best to provide an option to let users select an appropriate hash algorithm. Offering the user a choice will provide the most flexibility for experimentation and refining searches, although it does require a little more work on your part to set up the indexes. Many researchers, historians, and genealogists are familiar with the names of the algorithms, if not their implementations, so presenting them as options shouldn't intimidate these users.
References
- The Soundex Indexing System, U.S. National Archives
- R. L. Taft, Name Search Techniques (Albany, New York: New York State Identification and Intelligence System, 1970)
- Lawrence Philips, "The Double Metaphone Search Algorithm," Dr. Dobb's (June 1, 2000)
- Fuzzy