中间件与数据库:Flink
OPPO大数据诊断平台Compass Flink版本开源
继OPPO大数据平台开源基于Spark诊断产品Compass(代号“罗盘”)之后,我们又持续迭代开发集成了实时Flink引擎诊断,可用于诊断Flink作业的资源使用情况以及异常问题。在资源诊断方面,Compass给出Flink作业的建议资源参数, 可以缩容或扩容,让作业达到合理的资源使用状态;在异常问题诊断方面,定位Flink作业的运行异常问题,给出改善建议。Compass Flink版本不仅集成DolphinScheduler调度器,即可诊断DolphinScheduler上运行的Flink实时作业,还可以用于可自定义诊断自动上报Flink作业。我们希望通过Compass回馈开源社区,也希望更多人参与进来,共同解决任务诊断的痛点和难题。
Tuning Flink Clusters for Stability and Efficiency
At Pinterest, stream data processing powers a wide range of real-time use cases. Our Flink clusters are multitenant and run jobs that concurrently process more than 20M msgs/sec across 12 clusters. Over the course of 2022 and early 2023, we’ve spent a significant period of time optimizing our Flink runtime environment and cluster configurations, and we’d like to share our learnings with you.
微盟Flink on Kubernetes实时平台建设实践
本文将侧重介绍部署 K8s 环境,在任务开发、任务部署以及任务监控方面的一些实践总结。
一年省七位数,得物自建HFDS在 Flink Checkpoint 场景下的应用实践
早期使用阿里云OSS作为Checkpoint数据存储,单个Bucket每1P数据量只有免费带宽10Gb/s,超出部分单独计费。为了控制这部分成本,得物开展了自建HDFS在Flink Checkpoint场景下的落地工作。
Apache Flink 在微信业务场景下的内核及应用优化
随着微信业务的飞速发展,大数据应用已经全面走向实时化,业务对流计算引擎的稳定性及性能有更高的要求。微信基于 Flink on K8S 深入打造了云原生、高性能、稳定可靠的实时计算平台,支撑了微信各业务的快速发展。
Flink on K8S 在网易传媒的落地实践
分享网易传媒在 Flink on K8S 落地过程中关键问题的解决方案和自研实时计算平台 Riverrun 的特色建设。
B站基于 Flink 的海量用户行为实时 ETL 应用实践
在数仓分层架构体系中,从 ODS层到 DWD层数据转换需要进行数据清洗、脱敏、列式压缩等步骤。
Flink Task调度部署机制
在日常Flink使用过程中,我们经常遇到Flink任务中某些Slot或者TM负载过重的问题,对日常的资源调配、运维以及降本都带来了很大的影响,所以我们对Flink的task部署机制进行了梳理和调研,准备在后续的工作中进行优化。
基于 Apache Flink 的实时计算数据流业务引擎在京东零售的实践和落地
内容主要包括五个方面:
- 京东零售实时计算的现状
- 实时计算框架
- 场景优化:TopN
- 场景优化:动线分析
- 场景优化:FLINK 一站式机器学习
钱大妈基于 Flink 的实时风控实践
钱大妈与阿里云 Flink 实时计算团队共建实时风控规则引擎,精确识别羊毛党以防营销预算流失。
有赞实时计算 Flink 1.13 升级实践
随着有赞实时计算业务场景全部以Flink SQL的方式接入,对有赞现有的引擎版本—Flink 1.10的SQL能力提出了越来越多无法满足的需求以及可以优化的功能点。目前有赞的Flink SQL是在Yarn上运行,但是在公司应用容器化的背景下,可以统一使用公司K8S资源池,同时考虑到任务之间的隔离性以及任务的弹性调度,Flink SQL任务K8S化是必须进行的,所以我们也希望通过这次升级直接利社区的on K8S能力,直接将FlinkSQL集群迁移到K8S上。特别是社区在Flink 1.13中on Native K8S能力的支持完善,为了紧跟社区同时提升有赞实时计算引擎的能力,经过一些列调研,我们决定将有赞实时计算引擎由Flink 1.10升级到Flink 1.13.2。
3 (More) Tips for Optimizing Apache Flink Applications
Earlier this year, we shared our tips for optimizing large stateful Apache Flink applications. Below we’ll walk you through 3 more best practices.
Apache Flink运行时在B站的稳定性优化与实践
以Flink为基础的实时计算在B站有着广泛而深入的应用。
Flink SQL在B站的实践
目前在B站,线上大概有4000+的flink实时任务,主要支撑数据集成,实时数仓,模型训练,特征指标计算,以及增量化等业务。
Flink Unaligned Checkpoint 在 Shopee 的优化和实践
Flink 做为大数据流计算的标杆,通过 Checkpoint 和 State 保证了 Exactly Once 语义。在生产实践中,Shopee 遇到了很多 Checkpoint 的问题,并尝试引入 Flink 的 Unaligned Checkpoint 去解决。但调研后发现效果与预期有一定差距,所以在内部版本对其进行了深度改进,并将大部分改进已经反馈给了 Flink 社区。
本文会介绍 Checkpoint 存在的问题、Unaligned Checkpoint 原理、Shopee 对 Unaligned Checkpoint 的改进、对 Flink 社区的贡献以及内部的实践和落地。
JRC Flink流作业调优指南
Apache Flink作为Google Dataflow Model的工业级实现,经过多年的发展,如今已经成为流式计算开源领域的事实标准。它具有高吞吐、低时延、原生流批一体、高一致性、高可用性、高伸缩性的特征,同时提供丰富的层级化API、时间窗口、状态化计算等语义,方便用户快速入门实时开发,构建实时计算体系。
古语有云,工欲善其事,必先利其器。要想让大规模、大流量的Flink作业高效运行,就必然要进行调优,并且理解其背后的原理。本文是笔者根据过往经验以及调优实践,结合京东实时计算平台(JRC)背景产出的面向专业人员的Flink流作业调优指南。主要包含以下四个方面:
- TaskManager内存模型调优
- 网络栈调优
- RocksDB与状态调优
- 其他调优项
本文基于Flink 1.12版本。阅读之前,建议读者对Flink基础组件、编程模型和运行时有较深入的了解。