如何高效实现 MySQL 与 Elasticsearch 的数据同步
摘要
由于传统的 mysql 数据库并不擅长海量数据的检索,当数据量到达一定规模时(估算单表两千万左右),查询和插入的耗时会明显增加。同样,当需要对这些数据进行模糊查询或是数据分析时,MySQL作为事务型关系数据库很难提供良好的性能支持。使用适合的数据库来实现模糊查询是解决这个问题的关键。
但是,切换数据库会迎来两个问题,一是已有的服务对现在的 MySQL 重度依赖,二是 MySQL 的事务能力和软件生态仍然不可替代,直接迁移数据库的成本过大。我们综合考虑了下,决定同时使用多个数据库的方案,不同的数据库应用于不同的使用场景。而在支持模糊查询功能的数据库中,elasticsearch 自然是首选的查询数据库。这样后续对业务需求的切换也会非常灵活。
那具体该如何实现呢?在又拍云以往的项目中,也有遇到相似的问题。之前采用的方法是在业务中编写代码,然后同步到 elasticsearch 中。具体是这样实施的:每个系统编写特定的代码,修改 MySQL 数据库后,再将更新的数据直接推送到需要同步的数据库中,或推送到队列由消费程序来写入到数据库中。
但这个方案有一些明显的缺点:
- 系统高耦合,侵入式代码,使得业务逻辑复杂度增加
- 方案不通用,每一套同步都需要额外定制,不仅增加业务处理时间,还会提升软件复复杂度
- 工作量和复杂度增加
在业务中编写同步方案,虽然在项目早期比较方便,但随着数据量和系统的发展壮大,往往最后会成为业务的大痛点。
欢迎在评论区写下你对这篇文章的看法。