AI工程:AI Agent
AI Agent 是通过工程化的手段,为大语言模型提供了获取外部工具、知识的能力。他是介于人类、大语言模型之间的代理。当用户向 AI Agent 输入问题时,AI Agent 可以使用大语言模型作为推理引擎,将一个复杂的任务进行分解、给出任务执行规划。之后 Agent 会调用外部工具获取结果,并将大语言的上次推理和工具调用结果返回给大语言模型,让大语言模型继续思考、规划。如此循环,直到将一个复杂的任务完成。
AI助手:淘宝交易研发效率提升50%
本文将探讨如何利用AI技术,特别是AI Agent,来破解难题,提升研发效率。通过具体的案例和实践,我们将看到AI Agent如何在问题排查、测试数据生成和知识传承等方面发挥重要作用,成为工程师们高效工作的“神队友”。
复杂表格多Agent方案:从LLM洞察、系统性思考到实践经验总结
作者结合实践经验,以复杂表格智能问答POC项目为切入点,结合大模型的哲学三问(“是谁、从哪里来、到哪里去”),穿插阐述自己对大模型的一些理解与判断,以及面向公共云LLM的建设模式思考,并分享软件设计+模型算法结合的一些研发实践经验。
AI经营|多Agent择优生成商品标题
商品标题中关键词的好坏是商品能否被主搜检索到的关键因素,使用大模型自动优化标题成为【AI经营】中的核心能力之一,本文讲述大模型如何帮助商家优化商品素材,提升商品竞争力。
AI Agent在问答与排障中的实践探索
人工智能时代已然到来,它不仅深刻地改变了我们的日常生活,比如通过智能助手安排日程、利用推荐系统享受个性化服务,还极大地推动了各行各业的创新与发展。从医疗健康到环境保护,从智能制造到金融服务,AI的应用正在不断拓宽边界,提升效率与精准度。
LangChain RAG&Agent实践-活动组件AI助手的实现
活动组件AI助手落地共经历了三个阶段:
- 快速落地:采用Dify平台,验证AI与业务结合的想法,快速实现第一版;
- 优化性能:采用LangChain开发具备RAG能力的第二版;
- 丰富功能:开发具备Agent能力的第三版;
在上一篇《AIGC在活动业务中的探索与应用》中,介绍了使用Dify平台快速落地活动组件AI助手的第一版,验证了AI与业务结合的可行性。接着我使用LangChain开发了第二版,简化第一版中Dify RAG的流程,提升推荐组件的性能。有了组件推荐能力后,我们继续丰富AI助手的功能,又有了新的想法:能否根据需求,查询历史活动,快速复用同类型组件?为此我们开发了具备Agent能力的第三版,实现根据用户需求,自主规划任务和调用工具,查询所需的活动和组件数据,并实现快速复用历史活动组件的功能。
Building a GraphRAG Agent With Neo4j and Milvus
Build a GraphRAG Agent using Neo4j and Milvus. By combining the strengths of graph databases and vector search, this agent provides accurate and relevant answers to user queries.
实时语音交互的游戏队友——网易伏羲 AI Agent 创新应用
在 PVP 多人对战类的游戏中,社恐玩家的社交和情绪价值、对战局的操控感,无法得到有效满足。因此,网易伏羲助力《永劫无间》手游率先发布了全球首创的游戏 Copilot-多模态实时交互的语音 AI 队友。它可以在战斗中自主跑图、战斗、听指令、报战况,还会和玩家进行自由对话,给玩家带来极高的情绪价值。本文将重点讲解语音 AI 队友的设计和实现,及其背后的 AOP(Agent-Oriented-Programming,面向智能体编程)框架,最后还会分享语音技术在游戏场景的一些创新应用。
基于LLM的多智能体运维故障根因分析
本文旨在探索基于大型语言模型(LLM)的多智能体(Multi-Agents)技术在运维故障根因分析中的应用潜力,以期为企业带来更精确、更高效的运维故障诊断解决方案。
Agent 从想法到实现之六顶思考帽
本文简要介绍六顶思考帽的概念及其优势,讲解智能体的概念和常见的智能体平台,讲解该智能体的创建过程,带领大家从想法走向实现。
从零打造 AI 设计智能体
在设计产业中,虽然设计师和产品经理的角色各有不同,但两者之间的界限正变得日益模糊。设计师在考虑用户体验和产品功能的同时,产品经理也被要求具备一定的设计思维。今天,我们将探讨在设计思维转型为产品开发的过程中,如何打造一款简化创意流程的灵感设计插件工具。
多agent治理在海拍客的应用与实践
Java Agent这个技术,对于大多数读者来说都比较陌生,但是多多少少又接触过,实际上,我们平时用的很多工具,都是基于Java Agent实现的,例如常见的热部署JRebel,各种线上诊断工具(btrace, greys),还有阿里开源的arthas。另外我们大伙熟知的apm性能监控工具skywalking,pinpoint等都是agent的实际运用.那我们要怎么简单理解他呢 ,如果熟悉spring的读者应该知道动态代理技术,相对于agent技术,大家可以理解成一种jvm级别的aop技术. 有了它,可以在类加载前后增加相应代码,实现我们要的特性.
随着agent场景的普及,我们公司也在很多方面要用到agent带来的功能. 本文重点举例介绍3个agent场景,也是我们公司大量使用的地方.首先是apm调用链,大家应该对这个比较熟悉,业务迁移到微服务之后,服务之间的调用关系势必要借助apm工具来进行追踪的.其次是测试团队使用的覆盖率测试工具jacoco,另一个场景是我们在进行beta发布,全链路压测等场景需要对流量进行识别和传递,那么标签传递的过程中,会遇到大量的异步场景,调用走到线程池以后,标签会出现传递丢失,那么在这种情况下,目前比较流行的解决方案是接入阿里开源的transmittable-thread-local框架. 以上三个场景apm,jacoco,transmittable-thread-local等 ,都是基于agent(或者推荐使用agent方式)方式接入的,针对这么多agent,甚至以后会出现更多的类似场景,我们要怎么管理,引入了过多的agent以后会不会引入过多的风险?
你的Agent稳定吗?——基于大模型的AI工程实践思考
本文总结了作者在盒马智能客服的落地场景下的一些思考,从工程的角度阐述对Agent应用重要的稳定性因素和一些解法。
如何速成RAG+Agent框架大模型应用搭建
本文侧重于能力总结和实操搭建部分,从大模型应用的多个原子能力实现出发,到最终串联搭建一个RAG+Agent架构的大模型应用,让个人对于大模型应用如何落地更加具有体感。
阿里云服务领域Agent智能体:从概念到落地的思考、设计与实践
本文讲述了作者团队在阿里云的服务领域Agent是如何设计与实践的,以及到目前为止的一些阶段性成果,作者做出了总结和整理。
AI Agent 在 1688 电商平台中的应用
L40S相对低成本高显存的特性下,可以充分利用推理卡资源,保证在线上的良好性能和水平扩展性。通过技术优化和部署策略,推理系统的效率和用户体验得到显著提升。
手猫助手Agent技术探索总结
随着LLM的发展,ChatGPT能力不断增强,AI不断有新的概念提出,一种衍生类型的应用AI Agent也借着这股春风开启了一波话题热度。本文就手猫在探索Agent能力和智能助手业务结合过程、技术侧遇到的问题、想法和实践做简单总结。