AI工程:AI Agent
AI Agent 是通过工程化的手段,为大语言模型提供了获取外部工具、知识的能力。他是介于人类、大语言模型之间的代理。当用户向 AI Agent 输入问题时,AI Agent 可以使用大语言模型作为推理引擎,将一个复杂的任务进行分解、给出任务执行规划。之后 Agent 会调用外部工具获取结果,并将大语言的上次推理和工具调用结果返回给大语言模型,让大语言模型继续思考、规划。如此循环,直到将一个复杂的任务完成。
Qunar开发助手大揭秘:覆盖公司九成开发,提升研效的秘密武器
覆盖公司九成开发,提升研效的秘密武器。
云音乐 AI Agent 探索实践
本篇文章介绍了大语言模型时代下的 AI Agent 概念,并以 LangChain 为例详细介绍了 AI Agent 背后的实现原理,随后展开介绍云音乐在实践 AI Agent 过程中的遇到的问题及优化手段。
当虚拟人学会玩“狼人杀”:一次由大模型带来的智能体变革
2022年12月19日,Twitch上出现了一个名为“vedal987”的新直播频道。该频道没有真人主播,只有一个可爱的二次元女孩形象在屏幕上移动和说话。她自称为Neurosama,是一位人工智能VTuber。
从那天起,她开始了自己的直播生涯,并迅速获得了大量关注和支持。与传统基于动作捕捉的中之人范式的虚拟主播不同的是,Neuro完全是由人工智能驱动的,准确来说是由背后大语言模型驱动的。
LangChain+通义千问+AnalyticDB向量引擎保姆级教程
本文以构建AIGC落地应用ChatBot和构建AI Agent为例,从代码级别详细分享AI框架LangChain、阿里云通义大模型和AnalyticDB向量引擎的开发经验和最佳实践,给大家快速落地AIGC应用提供参考。
拥有自我意识的AI:AutoGPT
与传统的文本生成技术相比,我们发现AutoGPT的能力进化令人震惊,它可以通过分析你的目标,自动拆解成它需要执行的任务,并在执行的过程中根据已有的经验和决策不断优化完善和总结。
How We Improved Agent Chat Efficiency with Machine Learning
随着聊天的持续增长和新的内部工具的出现,帮助我们的代理更有效率和生产力是确保为我们的用户提供更快的支持时间并进一步扩大聊天规模的关键。
从对另一个第三方工具的使用情况进行分析,以及进行一些观察,我们意识到建立一个基于模板的功能不会有帮助。我们需要提供个性化的功能,因为我们的消费者支持专家关心他们的写作风格和语气,而使用模板往往让人觉得是机器人。
我们决定建立一个机器学习模型,称为SmartChat,它通过利用几个内部数据源提供上下文建议,帮助我们的聊天专家更快地打字,从而为更多的消费者服务。
在这篇文章中,我们将解释从问题发现到设计迭代的过程,并分享该模型是如何从数据科学和软件工程角度实现的。