公司:阿里巴巴
阿里巴巴集团创立于1999年,是中国大陆一家以提供互联网服务为主的综合企业集团,目前实行位于杭州,上海与北京的双总部制度。
阿里巴巴服务范围包括B2B贸易、网上零售、购物搜索引擎、第三方支付和云计算服务。集团的子公司包括阿里巴巴B2B、淘宝网、天猫、一淘网、阿里云计算、聚划算、全球速卖通、阿里巴巴国际交易市场、饿了么、飞猪、优酷、盒马鲜生、阿里影业、菜鸟网络、高德地图、Lazada、Daraz等。旗下的淘宝网和天猫在2012年销售额达到1.1兆人民币,2015年度商品交易总额已经超过三兆元人民币,是全球最大零售商。
至2012年九月底止的财政年度,以美国会计准则计算,阿里营业额按年增长74%至318.39亿元(港元‧下同),盈利急升80%至37.75亿元。2015年全年,阿里巴巴营收146.01亿美元,净利为74.94亿美元。2017年,根据阿里巴巴集团向美国证券交易委员会提交的IPO招股书显示,雅虎持有阿里巴巴集团22.6%股权、软银持阿里集团34.4%股份,另管理层、雇员及其他投资者持股比例合共约为43%,当中马云持阿里巴巴集团约8.9%、蔡崇信持股为3.6%。
2019年11月,阿里巴巴集团在在港交所二次上市。香港财经界把阿里巴巴、腾讯(港交所:700)、美团点评(港交所:3690)、小米(港交所:1810)四只中国大陆科技股的英文名称首个字母,合称“ATMX”股份。
2019年11月26日,阿里巴巴集团港股上市,总市值超4兆,登顶港股成为港股“新股王”。2020年8月,阿里巴巴集团港股总市值首次超过6万亿。
阿里巴巴拆份出去的蚂蚁集团上市前,网络金服整体遭遇到政府的强力监管,阿里巴巴同样受到影响,2021年4月10日,阿里巴巴集团涉垄断被中国市场监管总局罚款182.28亿元人民币。2023年三家中国最主要的金融机构,再联合开罚71亿元,不过也随着官方宣布最后整顿工作的完成,阿里巴巴股价开始反弹。
这些年背过的面试题——SpringCloud篇
Spring cloud 是一系列框架的有序集合。它利用 spring boot 的开发便利性巧妙地简化了分布式系统基础设施的开发,如服务发现注册、配置中心、消息总线、负载均衡、断路器、数据监控等,都可以用 spring boot 的开发风格做到一键启动和部署。
领先99%小白的Sora关键信息!
Sora是一个以视频生成为核心的多能力模型,本文简单介绍了什么是Sora,主要从Sora有多强、Sora技术突破以及复刻难度、意义和启发三个方向出发展开讨论。
兼顾性能的数据倾斜处理新姿势
本篇为系列第2篇,分享下在支付宝支付数据链路改造升级过程中,针对数据倾斜的优化实践新方法,在解决数据倾斜问题的同时,还能兼顾更优的计算性能!
LangChain原理学习笔记
本文将分享LangChain的最佳实践。
阿里开源搜索引擎Havenask的消息系统
本文针对性介绍了Havenask的消息系统--Swift,它是一个设计用于处理大规模的数据流和实时消息传递的高性能、可靠的消息系统。
我有一个朋友写出了17种触发NPE的代码!避免这些坑
我有一个朋友,写代码的时候常常遭到NPE背刺,痛定思痛,总结了NPE出没得17个场景,哪一个你还没有遇到过?
这些年背过的面试题——Kafka篇
本文是技术人面试系列Kafka篇,面试中关于Kafka都需要了解哪些基础?一文带你详细了解。
人人都是AI大师 - Prompt工程
prompt工程不需要复杂的编程知识,人人都可以使用prompt工程成为AI大师。本文只探讨prompt工程,不涉及模型训练等内容。只讨论文本生成,不涉及图像等领域。
浅谈弹性计算管控可观测性体系建设
为什么需要可观测性?可观测性技术对业务团队的价值有哪些?如何建设一个可观测性技术体系?本文将从整体架构到核心设计一一为大家讲解。
阿里集团基于Fluid+JindoCache加速大模型训练的实践
Fluid是一个开源可扩展的分布式数据编排和加速系统,以Kubernetes标准和对用户透明的方式为AI和大数据等数据密集型应用提供数据访问能力,其目标为构建云原生环境下数据密集型应用的高效支撑平台。
一次由于八股文引起的内存泄漏
本文记录两次报错系统监控现象以及作者针对性的排查过程和分析,最终解决了问题的全过程。
这些年背过的面试题——MySQL篇
本文是技术人面试系列MySQL篇,面试中关于MySQL都需要了解哪些基础。
从零构建现代深度学习框架(TinyDL-0.01)
本文主要以一个Java工程师视角,阐述如何从零(无任何二三方依赖)构建一个极简(麻雀虽小五脏俱全)现代深度学习框架(类比AI的操作系统)。
天猫国际自营贴纸系统的焕新之路
商品主图是向消费者表达商品信息的重要窗口,好的主图可以帮助消费者快速了解商品特性,加速购买决策,从而产生转化。
大模型推理框架RTP-LLM对LoRA的支持
LoRA(Low-rank Adapter)在大模型(如GPT-3,LLama, Qwen等)中,是一种重要的微调技术。该技术通过在不改变预训练模型参数的同时,添加低阶矩阵,学习新的、特定于任务的参数。
我知道你想用useEffect,但你先别急
useEffect是React提供给我们的一个“逃生舱”,是React 的纯函数式世界通往命令式世界的“逃生通道”,选择合适的时机使用useEffect会让我们的代码既优雅又高效,反之会造成不必要的负担。