GraphRAG + GPT-4o mini 低成本构建 AI 图谱知识库

摘要

简单来说,RAG(Retrieval-Augmented Generation,检索增强生成) 的工作原理是将大型文档分割成多个小段落或片段。主要原因是,大语言模型的上下文窗口长度有限,无法一次处理超过上下文窗口长度的信息。

当我提出一个问题时,RAG 技术可以先从这些片段中检索相关信息,根据我提问的内容与这些片段的相似度,找出若干个与问题相关的片段,组合成一个上下文,然后将这些信息,连同我的提问一起输入到大语言模型中,然后期待大语言模型「更为精准」的回答。

欢迎在评论区写下你对这篇文章的看法。

评论

ホーム - Wiki
Copyright © 2011-2024 iteam. Current version is 2.139.0. UTC+08:00, 2024-12-26 03:17
浙ICP备14020137号-1 $お客様$