Trae 开发实战:使用 MCP 和交错思考构建旮旯盖姆原型
如果无法正常显示,请先停止浏览器的去广告插件。
1. TRAE
(Meet>p)
Trae 开发实战:使 MCP 和交
错思考构建旮旯盖姆原型
唐
@MoonshotAI
trae.a
i
2. TRAE
(Meet>p)
MinakoKojima
●
●
●
●
Moonshot Dev Rel
Trae Expert
Google DIA infra team
ACM/ICPC Gold Medal
trae.a
i
3.
4.
5. TRAE
(Meet>p)
01 02 03 04
游戏开发 x AI
发展到哪 了? MCP 和 交错思考
如何帮助开发 装进 Trae!
实战 Demo AI 游戏的
未来展望
trae.a
i
6. TRAE
(Meet>p)
游戏开发 x AI
发展到哪 了?
01
trae.a
i
7. Beyond
降本增效
8. TRAE
(Meet>p)
trae.a
i
9. TRAE
(Meet>p)
trae.a
i
10. TRAE
(Meet>p)
trae.a
i
11. TRAE
(Meet>p)
trae.a
i
12. TRAE
(Meet>p)
trae.a
i
13. TRAE
(Meet>p)
trae.a
i
14. TRAE
(Meet>p)
trae.a
i
15. TRAE
(Meet>p)
trae.a
i
16. For
● 产端:降本增效,提 内容产量
● 营销端:扩 影响 ,形成 户 传播
● 玩家体验端:
让玩家玩到以前没玩过的东
trae.a
i
TRAE
(Meet>p)
17. TRAE
(Meet>p)
trae.a
i
18. TRAE
(Meet>p)
trae.a
i
19.
20.
21. TRAE
(Meet>p)
、独 开发者
For
● 快速构建 prototype,收获市场反馈
验证玩法可 性
● 不可能 → 可能
trae.a
i
22. TRAE
(Meet>p)
trae.a
i
23. TRAE
(Meet>p)
MCP 和 交错思
考如何帮助开发
02
trae.a
i
24. TRAE
(Meet>p)
trae.a
i
25. TRAE
(Meet>p)
trae.a
i
26. TRAE
(Meet>p)
trae.a
i
27. TRAE
(Meet>p)
trae.a
i
28. TRAE
(Meet>p)
MCP
进阶 法
trae.a
i
29. TRAE
(Meet>p)
trae.a
i
30. https://github.comaskman-
dev/agent-never-give-up-
mcp
31. TRAE
(Meet>p)
trae.a
i
32. TRAE
(Meet>p)
游戏资产
MCP
trae.a
i
33. TRAE
(Meet>p)
trae.a
i
34. TRAE
(Meet>p)
trae.a
i
35. TRAE
(Meet>p)
trae.a
i
36. TRAE
(Meet>p)
trae.a
i
37. TRAE
(Meet>p)
交错思考
trae.a
i
38. TRAE
(Meet>p)
trae.a
i
39. TRAE
(Meet>p)
trae.a
i
40. TRAE
(Meet>p)
trae.a
i
41. TRAE
(Meet>p)
trae.a
i
42. TRAE
(Meet>p)
What is interleaved thinking?
trae.a
i
43. TRAE
(Meet>p)
What is interleaved thinking?
Interleaved thinking is a process that involves interleaving actions
with reasoning to solve complex problems. In AI, it allows models to
reason, take actions with tools, and then reason again based on the
tool's results before taking further action. This makes the AI agent
more dynamic and capable of creating more sophisticated and reliable
solutions by reflecting and adjusting its plan in real-time, much like
how a student using interleaved practice gains deeper understanding
by connecting different concepts rather than relying on rote
memorization.
trae.a
i
44. TRAE
(Meet>p)
What is interleaved thinking?
Interleaved thinking is a process that involves interleaving actions
with reasoning to solve complex problems. In AI, it allows models to
reason, take actions with tools, and then reason again based on the
tool's results before taking further action. This makes the AI agent
more dynamic and capable of creating more sophisticated and reliable
solutions by reflecting and adjusting its plan in real-time, much like
how a student using interleaved practice gains deeper understanding
by connecting different concepts rather than relying on rote
memorization.
trae.a
i
45. TRAE
(Meet>p)
trae.a
i
46. TRAE
(Meet>p)
trae.a
i
47. TRAE
(Meet>p)
Why is Interleaved Thinking Important
for agentic model?
Interleaved thinking significantly enhances planning, self correction,
and reliability in long workflows. In practice, it transforms long, tool
heavy tasks into a stable plan → act → reflect loop, reducing state drift
and repeated mistakes while keeping actions grounded in fresh
evidence. Interleaved thinking also improves debuggability: reasoning
snapshots make failures explainable and recoverable, and raise
sample efficiency by reusing hypotheses, constraints, and partial
conclusions instead of re deriving them each step. For best results,
interleave thinking with tool feedback rather than front loading it, and
persist the chain of thought so it compounds across turns.
trae.a
i
48. TRAE
(Meet>p)
Why is Interleaved Thinking Important
for agentic model?
Interleaved thinking significantly enhances planning, self correction,
and reliability in long workflows. In practice, it transforms long, tool
heavy tasks into a stable plan → act → reflect loop, reducing state drift
and repeated mistakes while keeping actions grounded in fresh
evidence. Interleaved thinking also improves debuggability: reasoning
snapshots make failures explainable and recoverable, and raise
sample efficiency by reusing hypotheses, constraints, and partial
conclusions instead of re deriving them each step. For best results,
interleave thinking with tool feedback rather than front loading it, and
persist the chain of thought so it compounds across turns.
trae.a
i
49. TRAE
(Meet>p)
使 交错思考模型的好处
● 更好的 具调
● 更好的对话 成
● 更丝滑的开发交互
● 节省 Token
● etcs.
trae.a
i
50. TRAE
(Meet>p)
装进 Trae!
实战 Demo
03
trae.a
i
51.
52.
53.
54.
55.
56.
57.
58. TRAE
(Meet>p)
使
Trae 开发旮旯盖姆
● 构建游戏资产 MCP 服务
具构建对话
● 使 Thinking 模型调
● 构建辅助 具,加速项 开发
trae.a
i
59.
60.
61.
62. TRAE
(Meet>p)
使
●
●
●
●
Trae 开发旮旯盖姆
构建游戏资产 MCP 服务
使 Thinking 模型调
具构建对话
构建辅助 具,加速项 开发
使 Solo Coder 模式、侵 项
程,直接参与开发
trae.a
i
63. 把整个项
丢给 Trae
64.
65.
66. Try now:
https://github.com/
lychees/mtf-meido-
action
67. TRAE
(Meet>p)
AI 游戏的未来展望
04
trae.a
i
68. TRAE
(Meet>p)
AI 游戏的未来展望
04
trae.a
i
69.
70.
71.
72.
73.
74.
75. 总结
还是中
● 利 Trae 已经可以 幅提 开发产能( 论是
开发团队)
● AI 可以创造艺术,但存在 定伦理问题可以只制作原型,快
速验证玩法
● AI 陪伴并 消亡, 是和更多的玩法共
● 保持克制,未必要追求 AI Native 玩法
76.
77. 参考资料
References
● A Survey of Vibe Coding with Large Language Models
● Google Engineering Practices Documentation
● Context-Engineering-for-AI-Agents-Lessons-from-Building-Manus
● 知乎,你对AI做游戏到底持
种怎样的观点和态度?它真的摧毁了“
零基础开发、
● 中国
● 复盘 AI 陪伴消亡史:我们究竟做错了什么?
● AI游戏投资的荒诞真相
了
条冷
赛,但谁也没赢?
场
参加了
解密游戏,重新带
AI 搓的
线AI游戏
●
的游戏制作过程吗?
赛道
作式”
78. TRAE
(Meet>p)
The Real AI Engineer.
79.