话题公司 › Airbnb

公司:Airbnb

关联话题: 爱彼迎

爱彼迎(英语:Airbnb)是一个出租住宿民宿的网站,提供短期出租房屋或房间,让旅行者通过网站或手机发掘和预订世界各地的独特房源,为近年来共享经济发展的代表之一。该网站成立于2008年8月,公司总部位于美国加利福尼亚州旧金山,是一家私有公司,由“Airbnb, Inc.”负责管理营运。目前,爱彼迎在191个国家,65,000个城市中共有400万名房东、超过3,000,000笔房源。

该公司在中国的品牌名为爱彼迎,取“让爱彼此相迎”之义,品牌名发布后被批评“难听”和“性暗示”。

用户必须注册互联网账号才能使用网站。每一个住宿物件都与一位房东链接,房东的个人文件包括其他用户的推荐、顾客评价、回复评等和私信系统。

爱彼迎以用户体验驱动的 iOS 性能度量

爱彼迎上的整个用户旅程被划分为不同的页面,每个页面都有自己的页面性能分数(PPS)。为了支持这个基于页面的性能跟踪系统,我们建立了一个标准化的基础设施,使工程师能够配置页面和功能的对应关系。

在 iOS 上,页面与 UIViewController相关联。我们在 UIViewController 的生命周期中收集性能数据,在 viewDidDisappear 时发送收集到的日志。我们使用 PageName 作为全局的页面标识符,日志必须存在 PageName 时才能创建或发送。

Building Postcards for “Airbnb” Scale

How the Airbnb Media team built group travel Postcards for the 2024 Summer Release by leveraging a novel destination matching algorithm while advancing the platform’s image & localized text processing capabilities.

Personal Data Classification

An Important Foundation For Security, Privacy, and Compliance at Airbnb.

Apache Flink® on Kubernetes

At Airbnb, Apache Flink was introduced in 2018 as a supplementary solution for stream processing. It ran alongside Apache Spark™ Streaming for several years before transitioning to become the primary stream processing platform. In this blog post, we will delve into the evolution of Flink architecture at Airbnb and compare our prior Hadoop Yarn platform with the current Kubernetes-based architecture. Additionally, we will discuss the efforts undertaken throughout the migration process and explore the challenges that arose during this journey. In the end we will summarize the impact, learnings along the way and future plans.

How Airbnb Smoothly Upgrades React

Incrementally modernizing our frontend infrastructure to roll out the latest React features without downgrades.

Rethinking Text Resizing on Web

Airbnb has made significant strides in improving web accessibility for Hosts and guests who require larger text sizes.

Animations: Bringing the Host Passport to Life on iOS

How Airbnb enabled hosts and guests to connect and introduce themselves through the Host Passport.

Airbnb Brandometer: Powering Brand Perception Measurement on Social Media Data with AI

At Airbnb, we have developed Brandometer, a state-of-the-art natural language understanding (NLU) technique for understanding brand perception based on social media data. Brand perception refers to…

Introducing Trio | Part III

Part three on how we built a Compose based architecture with Mavericks in the Airbnb Android app.

Chronon, Airbnb’s ML Feature Platform, Is Now Open Source

A feature platform that offers observability and management tools, allows ML practitioners to use a variety of data sources, while handling the complexity of data engineering, and provides low latency streaming.

Introducing Trio | Part II

Part two on how we built a Compose based architecture with Mavericks in the Airbnb Android app.

Introducing Trio | Part I

A three part series on how we built a Compose based architecture with Mavericks in the Airbnb Android app

Riverbed:对爱彼迎的大规模数据访问进行优化

用于加快和提高读取密集型工作负载可靠性的爱彼迎数据框架的概述。

Migrating Our iOS Build System from Buck to Bazel

How Airbnb achieved a smooth and transparent migration from Buck to Bazel on iOS, with minimal interference to developer workflows.

从海量文本数据中建立爱彼迎的房源知识库:挖掘未结构化数据中的智慧

在爱彼迎,我们深知要为房客提供最佳体验,就必须深入理解和收集房源的结构化数据。例如,远程工作的房客需要知道房源是否设有适合的工作空间和稳定的网络连接,而有孩子的房客可能需要高脚椅和婴儿床等设施。然而,这些属性信息并非所有房源都明确显示,导致房东的房源描述与房客的需求之间存在不匹配。

这只是我们利用平台上产生的未结构化数据的例子之一。这些数据包括各种房客与平台互动产生的文本数据,经过匿名处理后,我们可以从中提取出有用的结构化数据。考虑到房客关注和查询的属性众多,我们开发了一个名为 Listing Attribute Extraction Platform (LAEP) 的机器学习系统,用于大规模地提取结构化数据,而无需依赖房东手动输入所有可能的房源属性。

LAEP 旨在自动从上述的未结构化的文本数据中提取出有用的结构化信息,例如房源的属性信息。由 LAEP 收集到的属性会被整合到各种应用中,以此来构建爱彼迎的房源知识库。为下游工具如属性优先级系统 (APS) 和房源属性收集系统 (Eve) 提供支持。

除了可以提取房源属性,LAEP 还能检测出各种类型的实体,如活动、房源设施以及著名的地标等景点。这就为我们支持更广泛的产品应用提供了可能性,例如,接待设施数据可以帮助房客在入住期间获得个性化服务,而活动数据可以帮助识别和创建新的房客喜爱的类别。

Transforming CRM DevOps at Airbnb: A Powerful Framework for Continuous Delivery

Airbnb开发了一个适用于CRM平台的弹性DevOps框架,集成了Salesforce DX、Git、Buildkite和Vlocity,以实现高效、连续且具有高软件质量的交付。他们的解决方案包括使用Git进行版本控制、通过Buildkite进行自动化部署和使用Salesforce DX将代码部署到目标环境。他们还采用了静态代码分析、代码审查和自动化测试等方法来确保代码质量和功能性。他们的框架还采用了预先验证和增量部署的方式来减少部署时间。这些改进使得部署时间从平均90分钟减少到15分钟,并实现了增量部署。他们的DevOps实施成功地提高了软件质量和交付效率。

首页 - Wiki
Copyright © 2011-2024 iteam. Current version is 2.131.0. UTC+08:00, 2024-09-10 00:17
浙ICP备14020137号-1 $访客地图$