话题中间件与数据库 › Milvus

中间件与数据库:Milvus

不止语义检索,Milvus+LangChain全文检索RAG教程来了

OpenAI与LangChain在AI agent开发理念上存在分歧,OpenAI侧重高级抽象加速开发,LangChain则强调精确控制确保可靠性。现代向量数据库如Milvus通过稀疏向量和密集向量协同工作,支持全文检索和语义搜索。本文详细解析了如何利用LangChain和Milvus构建RAG系统,展示了从文档加载、分割到向量化存储的完整流程,并提供了解决实际问题的经验总结。

RAG 系统高效检索提升秘籍:如何精准选择 BGE 智源、GTE 阿里与 Jina 等的嵌入与精排模型的完美搭配

MTEB和C-MTEB是评估文本嵌入模型性能的基准,涵盖多种任务、数据集和语言。BGE-M3、GTE、E5、Jina Embedding V3等模型在多语言、多功能和多粒度方面表现优异,支持长文本处理和高性能检索。这些模型通过创新技术如自知识蒸馏、LoRA适配器等,提升了文本嵌入的准确性和适用性,广泛应用于搜索、问答和大语言模型等领域。

Milvus×滴滴:超3000w SKU的商超检索系统是如何炼成的

滴滴的Grocery业务利用向量数据库技术改进生鲜电商搜索系统,通过Milvus和jina-embeddings-v3模型实现多语言支持和容错性。通过语义向量化,解决拼写错误和多语言搜索问题,提高搜索准确性和用户体验。上线后,向量搜索提升了搜索结果的转化效率,未来计划动态更新数据、个性化推荐和混合搜索,以进一步提升系统表现。Jina在多语言支持中表现优异,尤其在西语环境中效果突出。

哈啰:构建智能出行RAG,ES还是向量数据库?

从ES到Milvus再到Zilliz Cloud,RAG助力哈啰在大模型时代自我进化。

Building a GraphRAG Agent With Neo4j and Milvus

Build a GraphRAG Agent using Neo4j and Milvus. By combining the strengths of graph databases and vector search, this agent provides accurate and relevant answers to user queries.

图像搜索的新纪元:Milvus与CLIP模型相伴的搜图引擎

本文介绍了Milvus的技术原理和对CLIP模型的应用。通过将Milvus和CLIP相结合,我们可以构建出一种强大的搜图引擎,使用户能够通过文本描述或者上传的图片进行准确的图像搜索。

陌陌向量检索引擎工程实践

全球每天产生的数据中,有80%是非结构化数据,常见的非结构化数据包括语音、图片、视频和语言文字等。通过深度学习等技术训练得到的模型对非结构化数据进行特征提取,将非结构化数据转换成一个多维的向量,这个过程称作Embedding。多维向量本质上是对非结构化数据在高位空间的映射,而向量检索就是对这些生成的向量进行检索,从中找到最相似的若干个向量。

非结构化检索本质是向量检索技术,其主要的应用领域如人脸识别、推荐系统、图片搜索、视频指纹、语音处理、自然语言处理、文件搜索等。随着AI技术的广泛应用,以及数据规模的不断增长,向量检索也逐渐成了AI技术链路中不可或缺的一环,更是对传统搜索技术的补充,并且具备多模态搜索的能力。

基于Milvus的向量搜索实践(二)

本篇主要讲针对低延时、高吞吐需求,对Milvus部署方式的一种定制方案。

ChatGPT分享-如何开发一个LLM应用

AI产业的分工初步形成,包括底层基础设施(云服务商)、大型模型、Prompt Engineering平台和终端应用。随着AI产业变革,开发者可以充分利用大型语言模型(LLM)和Prompt Engineering来开发创新应用。

Elasticsearch 向量搜索的工程化实战

作为一家搜索引擎公司,我们会很倚赖 ES 帮忙处理包括文章召回,数据源划分,实体、标签管理等任务,而且都收到了不错的结果。

最近我们需要对行业知识库进行建模,其中可能会涉及到实体匹配、模糊搜索、向量搜索等多种召回和算分方式,最终我们选择了通过 ES 7.X (最终选择 7.10)里的新功能,Dense vector 帮忙一起完成这部分的需求。

Milvus探究与压测分析

最近用到了向量搜索,所以要对milvus进行压测。同时为了更加深入分析压测中遇到的问题,也对milvus的部分源码与文档进行了走读。其中遇到了一些问题与疑惑,我们也直接与milvus社区或开源贡献者沟通。

通过压测,我们发现某场景下存在milvus的性能提升不上去的问题,并给出基于该场景的解决方案,社区反馈给milvus官方。

以下为milvus的设计与压测中遇到的一些问题与解决或跟进方案。

基于WVP的轻量化智能监控平台

当代智能监控平台不乏功能强大的产品,但由于涉及模块、组件多,产品容易臃肿,对私有化场景增加了一定的阻碍。于是,轻量化智能监控平台很有必要。

知识库检索匹配的服务化实践

如何从浩瀚的知识库中搜索出我们想要的结果,本文将从算法模型和工程实现为你介绍有赞知识库检索匹配的实践方法。

浅谈有赞搜索QP架构设计

在NLP中,QP被称作Query理解(QueryParser),简单来说就是从词法、句法、语义三个层面对query进行结构化解析。这里query从广义上来说涉及的任务比较多,最常见的就是搜索系统中输入的查询词,也可以是FAQ问答或阅读理解中的问句,又或者可以是人机对话中用户的聊天输入。

在有赞,QP系统专注对查询内容进行结构化解析,整合了有赞NLP能力,提供统一对外接口,与业务逻辑解耦。通过配置化快速满足业务接入需求,同时将算法能力插件化,并支持人工干预插件执行结果。

以精选搜索为例,当用户输入衣服时用户往往想要搜的是衣服类商品,而不是衣服架,衣服配饰等衣服周边用品。通过将衣服类目进行加权,将衣服类的商品排在靠前的位置,优化用户搜索体验。

哈啰搜索推荐一体化建设

本次跟大家分享的是哈啰搜索推荐一体化建设,包括以下几大部分:搜推算法介绍和模型沉淀、搜推一体化引擎和算法组件设计和搜推一体化算法在哈啰的应用。

基于Milvus快速实践以图搜图

图片检索在生活中应用广泛,常见的图片检索包括基于文本内容搜索和基于图片内容搜索。基于文本内容搜索图片是通过给图片打标签,然后通过搜索标签来实现对图片的搜索;而基于图片内容搜索即以图搜图,用户通过输入图片在海量的图片库中快速找到同款或者相似图片,这种搜索方式被广泛应用于电商、设计、媒体咨询、智能监控以及搜索引擎等热门领域。

本文基于Milvus和图片特征提取模型VGG,借助SQL快速搭建了一套以图搜图端到端解决方案,为本地化进行海量图片相似度量实施工作提供可能。

inicio - Wiki
Copyright © 2011-2025 iteam. Current version is 2.143.0. UTC+08:00, 2025-05-02 22:04
浙ICP备14020137号-1 $mapa de visitantes$