话题公司 › 字节跳动

公司:字节跳动

北京字节跳动科技有限公司,简称字节跳动,是一家位于中国北京的跨国互联网技术公司,成立于2012年3月,旗下有产品媒体聚合服务今日头条和短影音抖音(及其海外版本TikTok)、西瓜视频、社交平台Lemon8等,也有一些加入人工智能技术的专业生产力软件,例如剪映、办公套装拉客(lark,中国版本称飞书)等业务。

至2018年,字节跳动的移动应用月度用户超过十亿人,估值750亿美元,超越Uber成为全球最有价值的创业公司。截至2019年7月,字节跳动的产品和服务已覆盖全球150个国家和地区、75个语种,曾在40多个国家和地区位居应用商店总榜前列。

在中国互联网企业中,字节跳动是第一家没有向阿里巴巴、腾讯或百度寻求商业保护或融资的创业公司;相反地,字节跳动被认为与百度、腾讯两大巨头有强烈的竞争关系,因字节跳动资金主要来源于抖音和今日头条的广告收入。

至2020年3月,字节跳动已经有六万员工,并计划再增员一万人。投资人和内部消息将字节跳动2019年的营收定在1,040亿元至1,400亿元人民币,超过了Uber、Snapchat和推特的总和。在中国,其广告收入也超越了腾讯、仅次于阿里巴巴。抖音的全球下载量达1.15亿次,固定用户近10亿。

iOS X Metirckit|如何使用官方框架提升APP性能及稳定性

iOS稳定性不好?耗电太快?戳文了解如何使用官方框架提升APP性能与稳定性!

升级上线忐忑不安?来试试渐进式发布吧

面向快速迭代,如何降低上线风险?字节跳动DataTester团队找到风险与迭代的平衡点——渐进式发布。

DanceNN:字节自研千亿级规模文件元数据存储系统概述

在一个典型的分布式文件系统中,目录文件元数据操作(包括创建目录或文件,重命名,修改权限等)在整个文件系统操作中占很大比例,因此元数据服务在整个文件系统中扮演着重要的角色,随着大规模机器学习、大数据分析和企业级数据湖等应用,分布式文件系统数据规模已经从 PB 级到 EB 级,当前多数分布式文件系统(如 HDFS 等)面临着元数据扩展性的挑战。

以 Google、Facebook 和 Microsoft 等为代表的公司基本实现了能够管理 EB 级数据规模的分布式文件系统,这些系统的共同架构特征是依赖于底层分布式数据库能力来实现元数据性能的水平扩展,如 Google Colossus 基于 BigTable,Facebook 基于 ZippyDB,Microsoft ADLSv2 基于 Table Storage,还有一些开源文件系统包括 CephFS 和 HopsFS 等也基本实现了水平扩展的能力。

一文读懂推荐系统中的debias

我们说到的 bias,一般是指一种相对不公平、偏离客观公正的理想状态,或者在整体的各个方面上表现出 unbalanced issues 的现象。对于“客观公正的理想状态”,在各种场景中没有一个统一的定义,而是在各自场景的讨论中会产生一些达成共识的概念。然而,这个概念也是随着人们认知的加深而不断延展的。因此 bias 仍然是一个非常 open 的话题。

推荐系统是一个涉及到众多环节的复杂系统。在系统中,推荐模型基于发生过的用户行为进行学习,对用户进行 item(视频、文章、商品等)的展现,用户对展现出来的 item 产生反馈,反馈的用户行为数据继续被模型学习。在整个链路中,没有哪个环节是绝对意义上的“因”和“果”,它们是一个相互影响的关系。

前端框架源码解读之Vite

得益于现在前端生态系统的快速发展,Vite 基于下面两个新特性去解决上述存在的问题,浏览器开始支持原生 ES 模块。越来越多 JavaScript 工具使用编译型语言如 Go 等进行编写,加快了构建速度。

从玄学走向科学,一文读懂A/B Test在广告营销领域应用

如何用A/B test科学衡量广告效果,快来看看这一篇。

如何从零搭建10万级 QPS 大流量、高并发优惠券系统

春节活动中,多个业务方都有发放优惠券的需求,且对发券的 QPS 量级有明确的需求。所有的优惠券发放、核销、查询都需要一个新系统来承载。因此,我们需要设计、开发一个能够支持十万级 QPS 的券系统,并且对优惠券完整的生命周期进行维护。

自动化左移实战

自动化召回除了与需求左移率有关外,与需求左移程度和自动化用例质量强相关。本文将从平台支持,流程规范,过程数据收集与分析,将需求左移工作闭环。

基线监控:基于依赖关系的全链路智能监控报警

基线监控已在字节跳动内部得到广泛使用,覆盖抖音、电商、广告等100+个项目,SLA任务的基线监控覆盖率超过80%。

字节跳动 Service Mesh 数据面编译优化实践

字节跳动在内部大规模落地了 Service Mesh,提供 RPC、HTTP 等多种流量代理能力,以及丰富的服务治理功能。Service Mesh 架构包含数据面和控制面,其中,字节跳动 Service Mesh 数据面基于开源的 Envoy 项目进行二次开发及改造,并针对主要的流量代理及服务治理功能进行了重写,项目采用 C++ 语言编写。

我们在优化数据面的历程中,基于 LLVM 编译工具链,围绕 C++ Devirtualization 以及编译优化进行了较多探索,落地了 LTO (Link Time Optimization)、PGO (Profile Guided Optimization) 、C++ Devirtualization 等编译优化技术,获得了 25% 的可观性能收益。本文将分享我们在字节跳动 Service Mesh 数据面的编译优化方向相关工作。

差分隐私技术在火山引擎的应用实践

随着用户自身隐私保护意识的提升和《数据安全法》、《个人信息保护法》等国家法律法规的陆续施行,如何在收集、使用用户数据的过程中保障用户的隐私安全、满足监管要求,成为了挑战性的问题。

春节钱包大流量奖励系统入账及展示的设计与实现

字节跳动开放平台-钱包团队整体负责字节系八端 2022 年春节活动奖励链路的入账、展示与使用,下文是对这段工作的介绍和总结,先整体介绍一下业务背景与技术架构,然后说明了各个难点的具体实现方案,最后进行抽象总结,希望对后续的活动起指导作用。

字节跳动基于 Apache Hudi 的多流拼接实践

字节跳动数据湖团队在实时数仓构建宽表的业务场景中,探索实践出的一种基于 Hudi Payload 的合并机制提出的全新解决方案。

字节客增慢 SQL 治理体系

慢 SQL 即执行时间超过 long_query_time 设定阈值的 SQL 语句,可通过 select @@long_query_time 查看数据库具体的慢查询阈值。另外慢 SQL 不仅仅包括 select 语句,也包括 delete,insert 等 DML 语句。

从真实事故出发:golang 内存问题排查指北

在日常的生产环境中,内存出现问题引起的事故通常较为严重,且排查难度较高。本文从一次日常生产中遇到的事故出发,记录了详细(痛苦)的排查过程,最终给大家总结了内存问题的常见场景,以及排查思路,希望可以帮助大家提高一些内存问题的排查解决效率。

开启一个A/B实验的正确姿势

如何正确开启一个实验。​

Accueil - Wiki
Copyright © 2011-2024 iteam. Current version is 2.139.0. UTC+08:00, 2024-12-27 15:28
浙ICP备14020137号-1 $Carte des visiteurs$