Haskell与代数数据类型

如果无法正常显示,请先停止浏览器的去广告插件。
分享至:
1. Haskell与代数数据类型
2. data关键字 data Point = MakePoint Double Double 数据类型 构造函数 MakePoint :: Double -> Double -> Point -- 构造数据 pointA = MakePoint 3.0 4.0 -- 解构数据 case pointA of MakePoint x y -> ... x ... y getX :: Point -> Double getX (MakePoint x y) = x
3. 中缀构造函数 data Point = Double :.: Double 数据类型 构造函数 (:.:) :: Double -> Double -> Point -- 构造数据 pointA = 3.0 :.: 4.0 -- 解构数据 case pointA of x :.: y -> ... x ... y case pointA of (:.:) x y -> ...
4. 记录语法 -- 添加新的绑定的时候都可以对数据进⾏行行解构 let MakePoint x y = pointA in ... x ... y MakePoint x y = pointA -- 使⽤用记录语法,可以让编译器器⾃自动⽣生成解构函数 data Point = MakePoint { getX :: Double , getY :: Double } -- getX, getY :: Point -> Double -- 构造数据的时候可以通过标签函数指定顺序 pointB = MakePoint{getY = 4.0, getX = 3.0}
5. c struct? +-----------+---+---+ | MakePoint | * | * | +-----------+---+---+ -- Haskell data Point = MakePoint { getX :: Double +--------------+ +--------------+ , getY :: Double | D# | Double# | | D# | Double# | } +--------------+ +--------------+ data Double = D# Double# // In C typedef struct { double x; double y; } point; +--------+--------+ | double | double | +--------+--------+
6. UNPACK to rescue! -- Haskell data Point = MakePoint { getX :: {-# UNPACK #-} !Double , getY :: {-# UNPACK #-} !Double } data Double = D# Double# +-----------+---------+---------+ | MakePoint | Double# | Double# | +-----------+---------+---------+ // In C typedef struct { +--------+--------+ double x; | double | double | double y; +--------+--------+ } point;
7. 『更更新』数据 -- Haskell中数据默认是不不可变的,只能根据原有的数据创建新的 pointB :: Point pointB = MakePoint (getX pointA) 5.0 -- 记录语法提供了了创建新数据的语法糖 pointB = pointA {getY = 5.0} -- 等价于 pointB = MakePoint{ getX = getX pointA , getY = 5.0 } +-----------+---+---+ +-----------+---+---+ | MakePoint | * | * | | MakePoint | * | * | +-----------+---+---+ +-----------+---+---+ +-----------+ +-----------+ +-----------+ | D# | 3.0# | | D# | 4.0# | | D# | 5.0# | +-----------+ +-----------+ +-----------+
8. 抽象出类型? -- 使⽤用其他数值类型? data FloatPoint = MakeFloatPoint Float Float data IntPoint = MakeIntPoint Int Int ... -- 使⽤用类型变量量抽象盒⼦子的数据类型! data Point a = MakePoint a a type IntPoint = Point Int type FloatPoint = Point Float -- Point Int 和 Point Float 是不不同的类型 -- Point Int :: Type -- Point :: Type -> Type
9. 抽象出类型? -- 使⽤用 Point a 定义,我们可以抽象出⼀一些通⽤用的操作 flipXY :: Point a -> Point a flipXY (MakePoint x y) = MakePoint y x -- flipXY 可以⼯工作在 IntPoint, FloatPoint...之上 -- 假如我们可以要求a类型的⼀一些性质,就可以实现更更有趣的操作 moveX :: Num a => Point a -> a -> Point a moveX (MakePoint x y) dx = MakePoint (x + dx) y -- 因为 moveX 使⽤用到了了 (+) :: Num a => a -> a -> a -- 即要求 a 类型是⼀一个数字 (Num a => ...) -- 所以 moveX 也必须要求 a 类型是⼀一个数字
10. ⾯面临选择? -- ⼀一个只有⼀一个居⺠民(inhabitant)的类型 data () = () +-----+---+---- | foo | * | ... +-----+---+---- +----+ | () | +----+ -- GHC 会优化空盒⼦子,程序⾥里里所有的()都指向 -- 静态内存的⼀一个地址 -- ⼀一个拥有两个居⺠民的类型 data Bool = True | False +-----+---+---- | bar | * | ... +-----+---+---- case x of True -> ... False -> ... -- 上述 Bool 类型就是标准库⾥里里的逻辑值类型 -- 程序⾥里里所有的 True, False 都指向静态内存的两个地址
11. Sum&Product -- 在类型之间选择的类型,⼜又被称为和类型(Sum Type) data Either a b = Left a | Right b -- Either a b 居⺠民的数量量,是 a 和 b 的居⺠民数量量之和 -- 同时包含若⼲干类型的类型,⼜又被称为积类型(Product Type) data (a, b) = (a, b) -- (a, b) 居⺠民的数量量,是 a 和 b 的居⺠民数量量之积 -- 代数数据类型⾥里里的『代数』,指的就是和类型和积类型。 "sum" is alternation (A | B, meaning A or B but not both) "product" is combination (A B, meaning A and B together)
12. 重要的代数类型 -- 标准库⾥里里表示可能不不存在的值的类型 Maybe a data Maybe a = Just a | Nothing divMaybe x y | y == 0 = Nothing | otherwise = Just (x `div` y) case x `divMaybe` y of Just ... -> ... _ -> ... -- 标准库⾥里里的单链表 data [a] = a : [a] | [] -- [1,2,3,4] 1:2:3:4:[]
13. 和类型的记录语法? -- 和类型⾥里里也可以使⽤用记录语法,但⾮非常不不推荐 data Candidate = Fresh School | Experienced { getCompany :: Company , getPosition :: Position } getCompany :: Candidate -> Company getCompany (Experienced comp _) = comp -- getCompany (Fresh _) = ??? -- 在和类型⾥里里使⽤用记录语法,会引⼊入部分(Partial)函数! -- 在运⾏行行过程中会发⽣生异常: -- *** Exception: No match in record selector getCompany
14. 递归的数据定义 -- ⼆二叉树 data BinTree a = Node (BinTree a) (BinTree a) a | Nil Node (Node Nil Nil 1) (Node Nil Nil 2) 0 +----+---+ +------+---+---+---+ | I# | 0#| | Node | * | * | * | +----+---+ +------+---+---+---+ +------+---+---+---+ | Node | * | * | * | +------+---+---+---+ +----+---+ | I# | 1#| +----+---+ +----+---+ | I# | 2#| +----+---+ +------+---+---+---+ | Node | * | * | * | +------+---+---+---+ +-----+ | Nil | +-----+
15. 递归数据递归处理理 data BinTree a = Node (BinTree a) (BinTree a) a | Nil countNode :: BinTree a -> Int countNode (Node left right _) = countNode left + countNode right + 1 countNode Nil = 0 countNode (Node (Node Nil Nil 1) (Node Nil Nil 2) 0) -- countNode (Node Nil Nil 1) + countNode (Node Nil Nil 2) + 1 -- (countNode Nil + countNode Nil + 1) + (countNode Nil + countNode Nil + 1) + 1 -- (0 + 0 + 1) + (0 + 0 + 1) + 1
16. 盒⼦子⽐比喻 -- 在 ghc 的堆(heap)上,除了了构造函数像⼀一个盒⼦子 pointA = MakePoint 1 2 +-------------------+ | MakePoint | * | * | +-------------------+ InfoTable +--------------+ | Layout | +--------------+ | Closure Type | +--------------+ | SRT Bitmap | +--------------+ | Code ... | +---------+ | D# | 1# | +---------+ +---------+ | D# | 2# | +---------+
17. 任务盒? -- 在 ghc 的堆(heap)上,除了了构造函数之外,有⼀一类特除的盒⼦子 1 + 2 :: Double +---------------+ | + | * | * | * | +---------------+ InfoTable +--------------+ | Layout | +--------------+ | Closure Type | +--------------+ | SRT Bitmap | +--------------+ | Code ... | +---------+ | D# | 1# | +---------+ +---------+ | D# | 2# | +---------+
18. 递归求解任务盒 countNode (Node (Node Nil Nil 1) (Node Nil Nil 2) 0) +-----------+---+---+ | countNode | * | * | +-----------+---+---+ +------+---+---+---+ | Node | * | * | * | +------+---+---+---+ +------+---+---+---+ | Node |Nil|Nil| * | +------+---+---+---+ +------+---+---+---+ | Node |Nil|Nil| * | +------+---+---+---+
19. 递归求解任务盒 countNode (Node Nil Nil 1) + countNode (Node Nil Nil 2) + 1 +---+---+---+---+ | + | * | * | * | +---+---+---+---+ +---+---+---+---+ +---------+ | + | * | * | * | | I# | 1# | +---+---+---+---+ +---------+ +-----------+---+---+ +-----------+---+---+ | countNode | * | * | | countNode | * | * | +-----------+---+---+ +-----------+---+---+ +------+---+---+---+ | Node |Nil|Nil| * | +------+---+---+---+ +------+---+---+---+ | Node |Nil|Nil| * | +------+---+---+---+
20. 递归求解任务盒 (countNode Nil + countNode Nil + 1) + (countNode Nil + countNode Nil + 1) + 1 countNode Nil + countNode Nil +---+---+---+---+ | + | * | * | * | +---+---+---+---+ +---------------+---+ | countNode | * |Nil| +---------------+---+ +---------------+---+ | countNode | * |Nil| +---------------+---+
21. 统⼀一的内存表示 (0 + 0 + 1) + (0 + 0 + 1) + 1 +---+---+---+---+ | + | * | * | * | +---+---+---+---+ +---+---+---+---+ | + | * | * | * | +---+---+---+---+ +---+---+---+---+ | + | * | * | * | +---+---+---+---+ +---+---+---+---+ | + | * | * | * | +---+---+---+---+ +---------+ | I# | 1# | +---------+ +---+---+---+---+ | + | * | * | * | +---+---+---+---+ +---------+ | I# | 1# | +---+---+---+---+ +---------+ +---------+ | I# | 1# | | + | * | * | * | +---------+ +---+---+---+---+
22. 统⼀一的内存表示 3 +---------+ | I# | 3# | +---------+
23. Thinking recursively data BinTree a = Node (BinTree a) (BinTree a) a | Nil -- 对⼆二叉树的结点求和 sumBinTree :: Num a => BinTree a -> a sumBinTree = ? -- 求⼆二叉树的⾼高度 binTreeHeight :: BinTree a -> Int binTreeHeight = ?
24. Keep Invariant! -- 递归结合数据结构的性质可以解决⼀一些有趣的问题 -- 假如我们规定插⼊入⼆二叉树的节点保持⽐比⽗父节点 key ⼩小的进左树 -- 否则进右树的性质 insertNode :: Ord k => BinTree (k, v) -> (k, v) -> BinTree (k, v) insertNode (BinTree left right kv'@(k', _)) kv@(k, _) | k < k' = BinTree (insertNode left kv) right kv' | k == k' = BinTree left right kv | k > k' = BinTree left (insertNode right kv) kv' insertNode Nil kv = BinTree Nil Nil kv
25. Keep Invariant! -- 有了了左右树和⽗父节点⼤大⼩小的性质,递归搜索⼀一个 k 就变得很简单 lookup :: Ord k => BinTree (k, v) -> k -> Maybe v lookup k (Node left right (k',v)) | k < k' = lookup k left | k == k' = Just v | k > k' = lookup k right lookup _ Nil = Nothing
26. 递归的两种形式 data BinTree a = Node (BinTree a) (BinTree a) a | Nil -- direct style countNode :: BinTree a -> Int countNode (Node left right _) = countNode left + countNode right + 1 countNode Nil = 0 -- accumulator style countNode' :: BinTree a -> Int -> Int countNode' (Node left right _) acc = countNode' left (countNode' right acc) + 1 countNode' Nil acc = acc

Accueil - Wiki
Copyright © 2011-2024 iteam. Current version is 2.137.1. UTC+08:00, 2024-11-14 11:17
浙ICP备14020137号-1 $Carte des visiteurs$