融合习题难度和作答经验的深度知识追踪模型
如果无法正常显示,请先停止浏览器的去广告插件。
1. 2023 55 4
Journal of South China Normal University Natural Science Edition
1
1.
81-86
doi 10.6054 / j.jscnun.2023052
1*
2
1
510631 2.
430062
DKT-DE 。
。
DKT-DE
SISTments2017
。
5
3
ASSISTments2009、 ASSISTments2015、 AS-
BKT、 DKT、 DKT+、 DKVMN、 SAKT
DKT-DE
DKT-DE
DKT+
ASSISTments2009、 ASSISTments2015、 ASSISTments2017
AUC
2.78%、
2.44%、
1.5%。
。
TP391
A
1000-5463 2023 04-0081-06
Deep Knowledge Tracing Model by Integrating Problem Difficulty and Answering Experience
LIANG Xiang 1 LIU Mengchi 1*
HU Jie 2 FENG Jiamei 1
1. Department of Computer Science South China Normal University Guangzhou 510631 China
2. Department of Computer and Information Engineering Hubei University Wuhan 430062 China
Abstract Aiming at the problem that the existing deep knowledge tracking model lacks comprehensive considera-
tion of exercises and student characteristic information. A deep knowledge tracking model by integrating problem
difficulty and answering experience DKT -DE is proposed. The model evaluates the difficulty of the exercises and
the students' answering experience by analyzing the answer sequence to enrich the feature information of the input
layer of the model thereby improving the prediction performance of the model. Finally the DKT - DE model was
compared with five baseline models BKT DKT DKT + DKVMN SAKT model through comparative experiments
and ablation experiments on three public datasets ASSISTments2009 ASSISTments2015 ASSISTments2017 . The
comparative experiment results demonstrate that the DKT -DE model can more accurately assess students' knowledge
mastery. Compared with the best -performing baseline model DKT + the DKT -DE model achieves an average AUC
improvement of 2. 78% 2. 44% and 1. 5% on the ASSISTments2009 ASSISTments2015 and ASSISTments2017
datasets respectively. The ablation experiment results further confirm the positive contributions of incorporating
question difficulty and student response experience to enhance the predictive capability of the model.
Keywords educational data mining knowledge tracking deep learning student model intelligent education
、
。
gent Tutoring Systems ITS
ITS
。
2021-10-11
《
》
61672389
*
Email liumengchi@ scnu.edu.cn
http ∥journal -n.scnu.edu.cn
201905010009
1
Intelli-
。
2. 55
8 2
2
ITS
Knowledge Tra-
。
cing KT
ITS
Deep Knowledge Tracing Model by Integrating
Problem Difficulty and Answering Experience DKT -
DE 。
。
Bayesian Knowledge Tracing
Hidden Markov
BKT 3
Model HMM
。
DKT -DE
1
1.1
。2015
PIECH
Recurrent Neu-
4
ral Network RNN
Deep Knowledge Tracing DKT 。
RNN
DKT
BKT
DKT
。
DKT
。
x 0 … x t
s t
Q
i
1
1.2
。
5
WANG
DKT
archical Knowledge Tracing DHKT
Deep Knowledge Tracing PDKT
。
MINN
i
0
RNN
。
One - Hot
=
x t
q t r t
t
x t
y t
h t
。
h t
Deep Hier-
6
CHEN
DKT
Prerequisite Driven
。
2
PIECH
DKT
DKT
。
r t+ 1 。
DKT
2015
。
q t+ 1 = Q
x i = q i r i
q i = Q
id r i = 0 1
。
t
h t- 1
t
t
1.3
10
。
7
。
K - mean
DKT
NAGATANI
。
8
。
10
9
LFKT
。
D q j =
{
。
φ q j a
a
[ Σ
N j
φ q j a =
i= 0
。
D q j
| N j | ≥ 10
| N j | <10
| r ij = 0 |
N j
q j = Q
]
1
a - 1
Q
3. 4
8 3
d j =R a
One - Hot
q j
D q j
N j
r ij
i
0
D q j
DKT
r ij =
q j
。
10
a。
a
。
DKT - DE
、
。
q j
q j
2
e t
d t =R a
1 z = Σ
c jt = 1
t= 1
z
1 z = Σ
c jt = 0
t= 1
E c j
1 z = Correct c j
F c j 1 z
1 z
Correct c j
1
z
b
{
= - b
b
1 z
1 z
-Incorrect c j 1 z
| F c j 1 z | <b
F c j
1 z
≤ - b
F c j 1 z ≥ b
Incorrect c j 1 z
c j = C
C
b =N +
2
E c j
1 z
t -1
。x' t x t
=R
x' t = Embedding q t r t
F c j 1 z
E c j 1 z = - b
One - Hot
3
1
q t
1
t
h t = LSTM x t h t-1 。
4
m
c j
e jz =R 2b+1
c t
2b+1
x t = Concat x' t d t e t t-1
x' t
Embedding
t
q t
t
id r t = 0 1
0
c t
t
id
t - 1。
LSTM
h t =R k
k
。h t
x t
h t- 1
z
F c j
x' t =R g 、
t
。
Incorrect c j
、
x t
q t
Correct c j
3
。
y t =R
t
Q
。y t
y t = σ W yh h t + b y
m
m × k
2
ASSISTments2009、 ASSISTments2015、 AS-
SISTments2017
b
8。
1
。
W yh =R
σ ·
Sigmoid
5
b y =R
。
m
y t
r t
。
L =- Σ
r t log y t + 1 - r t log 1 - y t
。
t
1
Figure 1
The relationship between the answer experience value
and the correct rate
1.4
DKT
。DKT -DE
2
Figure 2
DKT-DE
Structure diagram of DKT-DE model
6
4. 55
8 4
Embedding size
2
m
。
a
DKT - DE
3
5
log 2 m
10
b
8。
2.3
AUC
DKT -DE
16
Area Under the ROC Curve
。
。AUC
ROC
2.1
0 ~ 1。
ASSITments2009
SITments2015
12
ASSITments2017
13
11
、 AS-
AUC
0.5
AUC
1
。
。
2.4
1 ASSISTments2009
ments
ASSIST-
3
2009—2010
5
skill - builder
325 637
DKT - DE
。
4 151
5
。
2 ASSISTments2015
AUC
AS-
。
1
2015—2016
SISTments
BKT、
DKT、 DKVMN、 DKT + 、 SAKT
。
、
110
DKT - DE
2.4.1
1
。
0
1
19 840
、
100
683 801
BKT
。 2 DKT
3
17
DKVMN
。
18 - 19
20
。 3 DKT +
ASSISTments2009
。
3 ASSISTments2017
DKT +
ASSISTments
686
942 816
DKT
ASSITments2009、ASSITments2015、ASSITments2017
、 102
AUC
。
、
0.80%、 1.79%
1.67%。 4
。
DKT、 DKVMN
DKT - DE
DKT
8∶2
5
mini - batch
32
Dropout
batch - size
AUC
ASSITments2009、
ASSITments2015、
ASSITments2017
AUC
0. 005
15
2.78%、 2. 44%、
DKT - DE
1.50%
0.4。
ASSITments2009、
3.60%、
4.28%、
3.19%
DKT +
DKT - DE
。
14
200
。 5
ASSITments2015、
ASSITments2017
80%
20%
18
SAKT
2.2
Adam
DKT
。
Embedding
1
Table 1
3
AUC
Average AUC of each model on the test set
AUC
BKT DKT DKVMN DKT+ SAKT DKT-DE
ASSISTments2009 0.624 0.749 0.747 0.755 0.742 0.776
ASSISTments2015 0.642 0.723 0.721 0.736 0.719 0.754
ASSISTments2017 0.635 0.719 0.711 0.731 0.678 0.742
5. 4
8 5
2.4.2
ASSIT-
3
ments2009、 ASSITments2015、 ASSITments2017
DKT -
。
DE
DKT
DKT
DKT - Diff
DKT
DKT -Exp
。
DKT -DE 。
2
。
DKT - DE
2
DKT - DE
DKT - Diff
DKT -Exp
。
。
2
Table 2
Results of ablation experiments
DKT - DE
AUC
DKT-Diff
DKT-Exp
。
DKT-DE
ASSISTments2009 0.758 0.763 0.776
ASSISTments2015 0.730 0.746 0.754
ASSISTments2017 0.733 0.734 0.742
。
2.5
1
Assistments2009
DKT - DE
。
M . San Francisco Margan Kaufmann 2010.
3
2
t
t +1
r t
WOOLF B P. Building intelligent interactive tutors
student-centered strategies for revolutionizing e-learning
q t
PIECH C HUANG J NGUYEN A et al. Learning pro-
gram embeddings to propagate feedback on student code
C ∥ Proceedings of the 32nd International Conference
。
on Machine Learning. Lille PMLR 2015 1093-1102.
3
CORBETT A T ANDERSON J R. Knowledge tracing mode-
lling the acquisition of procedural knowledge J . User
。
Modeling and User - Adapted Interaction 1995 4 253 -
278.
。
4
PIECH C SPENCER J HUANG J et al. Deep knowledge
tracing J . Computer Science 2015 3 3
5
19-23.
WANG T MA F GAO J. Deep hierarchical knowledge
tracing C ∥ Proceedings of the 12th International Con-
ference on Educational Data Mining. Worcester IEDMS
2019 1-4.
6
CHEN P LU Y ZHENG V W et al. Prerequisite-driven
deep knowledge tracing C ∥ Proceedings of the 2018
IEEE International Conference on Data Mining. Piscata-
way IEEE 2018 39-48.
7
MINN S YU Y DESMARAIS M C et al. Deep knowledge
tracing and dynamic student classification for knowledge
3
Figure 3
tracing C ∥Proceedings of the 2018 IEEE International
Heat map of knowledge mastery
Conference on Data Mining. Piscataway IEEE 2018
6. 55
8 6
1182-1187.
8
15
NAGATANI K ZHANG Q SATO M et al. Augmenting Dropout a simple way to prevent neural networks from
knowledge tracing by considering forgetting behavior C ∥ overfitting J . The Journal of Machine Learning Re-
Proceedings of the 2019 World Wide Web Conference. search 2014 15 1
New York ACM 2019 3101-3107.
9
16
. LFKT
J .
2021 32 3
818 -
C ∥Proceedings of the 18th International Joint Confe-
830. rence on Artificial Intelligence. Acapulco IJCAI 2003
519-524.
17
memory networks for knowledge tracing C ∥Proceedings
MINN S ZHU F DESMARAIS M C. Improving knowledge of the 26th International Conference on World Wide Web.
tracing model by integrating problem difficulty C ∥Pro-
New York ACM 2017 765-774.
18
PANDEY S KARYPIS G. A self-attentive model for know-
Data Mining Workshops. Piscataway IEEE 2018 1505 - ledge tracing C ∥Proceedings of the 12th International
1506. Conference on Educational Data Mining. Montréal Inter-
national Educational Data Mining Society 2019 384-389.
BAKER R SIEMENS G. Educational data mining and
learning analytics DS / OL .
2021 - 07 - 07 . https ∥
19
GHOSH A HEFFERNAN N LAN A S. Context-aware at-
sites. google. com / site / educationaldatamining / home / data - tentive knowledge tracing C ∥ Proceedings of the 26th
and-datasets / assistment-2009-2010-data. ACM SIGKDD International Conference on Knowledge
BAKER R GOLDMAN S. 2015 ASSISTments skill builder Discovery & Data Mining. New York ACM 2020 2330-
data
DS / OL .
2021 - 07 - 07 . https ∥ sites. google.
2339.
com / site / assistmentsdata / home /2015-assistments-skill-
13
ZHANG J SHI X KING I et al. Dynamic key - value
818-830.
ceedings of the 2018 IEEE International Conference on
12
LING C X HUANG J ZHANG H. AUC a statistically
LI X G WEI S Q ZHANG X et al. LFKT Deep know-
merging J . Journal of Software 2021 32 3
11
1929-1958.
consistent and more discriminating measure than accuracy
ledge tracing model with learning and forgetting behavior
10
SRIVASTAVA N HINTON G KRIZHEVSKY A et al.
20
YEUNG C K YEUNG D Y. Addressing two problems in
builder-data. deep knowledge tracing via prediction-consistent regulari-
BAKER R HEFFERNAN N. The 2017 ASSISTments data- zation C ∥Proceedings of the Fifth Annual ACM Confe-
mining competition dataset DS / OL . 2021-07-07 . ht- rence on Learning at Scale. New York ACM 2018 1-10.
tps ∥sites.google.com/ view / assistmentsdatamining / dataset.
14
KINGMA D BA J. Adam a method for stochastic optimi-
zation J . Computer Science 2014 4
13-21.
【
】