LLM-powered data classification for data entities at scale

摘要

At Grab, we deal with PetaByte-level data and manage countless data entities ranging from database tables to Kafka message schemas. Understanding the data inside is crucial for us, as it not only streamlines the data access management to safeguard the data of our users, drivers and merchant-partners, but also improves the data discovery process for data analysts and scientists to easily find what they need.

The Caspian team (Data Engineering team) collaborated closely with the Data Governance team on automating governance-related metadata generation. We started with Personal Identifiable Information (PII) detection and built an orchestration service using a third-party classification service. With the advent of the Large Language Model (LLM), new possibilities dawned for metadata generation and sensitive data identification at Grab. This prompted the inception of the project, which aimed to integrate LLM classification into our existing service. In this blog, we share insights into the transformation from what used to be a tedious and painstaking process to a highly efficient system, and how it has empowered the teams across the organisation.

欢迎在评论区写下你对这篇文章的看法。

评论

Accueil - Wiki
Copyright © 2011-2024 iteam. Current version is 2.137.1. UTC+08:00, 2024-11-15 15:41
浙ICP备14020137号-1 $Carte des visiteurs$