Capacity Recommendation Engine: Throughput and Utilization Based Predictive Scaling

摘要

Capacity is a key component of reliability. Uber’s services require enough resources in order to handle daily peak traffic and to support our different kinds of business units. These services are deployed across different cloud platforms and data centers (“zones”). With manual capacity management, it often results in an over-provisioned capacity, which is insufficient for resource usage. Uber built an auto-scaling service, which is able to manage and adjust resources for thousands of micro services. Currently, our auto-scaling service is based on a pure utilization metric. We recently built a new system, Capacity Recommendation Engine (CRE), with a new algorithm that relies on throughput and utilization based scaling with machine learning modeling. The model provides us with the relationship between the golden signal metrics and service capacity. With reactive prediction, CRE helps us to estimate the zonal service capacity based on linear regression modeling and peak traffic estimation. Apart from capacity, the analysis report can also tell us different zonal service characteristics and performance regression. In this article, we will deep dive into CRE’s modeling and system architecture, and present some analysis of its results.

欢迎在评论区写下你对这篇文章的看法。

评论

inicio - Wiki
Copyright © 2011-2025 iteam. Current version is 2.139.0. UTC+08:00, 2025-01-10 04:48
浙ICP备14020137号-1 $mapa de visitantes$