TensorFlow_Best_Practices_Intel_Xeon_AI-HPC_v1.0_Q3_2018

如果无法正常显示,请先停止浏览器的去广告插件。
分享至:
1. Best Practices for Scaling Deep Learning Training and Inference with TensorFlow* On Intel® Xeon® Processor Based HPC Infrastructures _____________________________________ Version: 1.0 Date of Issue: August 2018 Prepared By: Aishwarya Bhandare¶, Deepthi Karkada¶, Kushal Datta¶, Anupama Kurpad§, Vamsi Sripathi¶, Sun Choi¶, Vikram Saletore¶, § Connectivity Group & ¶AI Products Group Data Center Group, Intel Corp Customer Solutions Technical Enabling/AIPG
2. Notices and Disclaimers: Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are accurate. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit: http://www.intel.com/performance. Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. Consult other sources of information to evaluate performance as you consider your purchase. For more complete information about performance and benchmark results, visit www.intel.com/benchmarks. Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system manufacturer or retailer or learn more at intel.com. The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document. Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade. Intel, the Intel logo, Xeon, Xeon Phi and Nervana are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others © 2018 Intel Corporation. All rights reserved.
3. Best Practices for Scaling Deep Learning Training and Inference with TensorFlow* On Intel® Xeon® Table of Contents 1.Best Practices for TensorFlow Over Intel® Xeon® ...............................................4 1.1 1.2 1.3 1.4 1.5 TensorFlow Setup and Installation .................................................................... 4 Install MPI, if not already installed ................................................................... 4 Install Uber’s Horovod Library ........................................................................ 5 Installing tf_cnn_benchmarks ........................................................................... 5 Preparing the ImageNet2012-1K Dataset........................................................... 5 Steps to download and prepare Dataset ....................................................................... 6 Already have the ImageNet-1K Dataset ....................................................................... 6 Dataset Striped on Lustre ............................................................................................ 6 1.5.1 1.5.2 1.5.3 1.6 Example: Running ResNet-50 with tf_cnn_benchmarks ..................................... 7 tf_cnn_benchmarks: ResNet-50 ................................................................................... 7 Training on Single-Node with Multiple Workers ......................................................... 8 Using OpenMPI........................................................................................................... 9 Using Intel® MPI ...................................................................................................... 10 Using MVAPICH2 .................................................................................................... 10 Training on Multiple Nodes with Multiple Workers .................................................. 11 Evaluating the Accuracy of the Trained Model .......................................................... 11 Multi-Stream Inference on the Trained Model .......................................................... 12 Running Inference on the Trained Model .................................................................. 13 1.6.1 1.6.2 1.6.3 1.6.4 1.6.5 1.6.6 1.6.7 1.6.8 1.6.9 2.Using Singularity ...............................................................................................15 2.1 2.2 2.3 Installing Singularity ...................................................................................... 15 Building Singularity Image ............................................................................. 15 Running TensorFlow With Singularity ............................................................ 15 3.Using NFS and SLURM .....................................................................................17 3.1 3.2 Using NFS Mounted File System ..................................................................... 17 Using SLURM Scheduler ................................................................................ 17 4.TensorFlow Build Instructions...........................................................................18 4.1 4.2 Building TensorFlow ...................................................................................... 18 Install TensorFlow using script ....................................................................... 19 5.Sample scripts ...................................................................................................20 5.1 5.2 5.3 TensorFlow build script .................................................................................. 20 SLURM scripts .............................................................................................. 22 Singularity scripts .......................................................................................... 24 Install script .............................................................................................................. 24 Recipe file for tensorflow wheel downloaded from a URL .......................................... 24 Recipe file for TensorFlow wheel on local file system ................................................. 25 Singularity run-script ................................................................................................ 27 5.3.1 5.3.2 5.3.3 5.3.4 6.Troubleshooting ................................................................................................28 6.1 TensorFlow Import Issues .............................................................................. 28 Importing TensorFlow .............................................................................................. 28 Run ldd to find the dynamically linked libraries ........................................................ 28 Check by running: ..................................................................................................... 29 Another Common Error when Importing TensorFlow .............................................. 30 Verify that TensorFlow is Using right the version of gcc ............................................ 30 Run ldd again after adding the correct version of gcc ................................................ 31 6.1.1 6.1.2 6.1.3 6.1.4 6.1.5 6.1.6 6.2 6.3 6.4 TensorFlow Build Issues ................................................................................. 32 Horovod Install Issues .................................................................................... 33 Verify Intel® Omni-Path Architecture (OPA) ................................................. 33 6.4.1 Version 0.94 Verify that OPA is Up and Running .......................................................................... 33 Page 2 9/15/2018
4. Best Practices for Scaling Deep Learning Training and Inference with TensorFlow* On Intel® Xeon® 6.4.2 6.4.3 6.4.4 Version 0.94 Verify Install (Example of a good install) ................................................................... 33 Verify OPA Fabric Performance ............................................................................... 34 OPA Install Issues ..................................................................................................... 34 Page 3 9/15/2018
5. Best Practices for Scaling Deep Learning Training and Inference with TensorFlow* On Intel® Xeon® 1. BEST PRACTICES FOR TENSORFLOW OVER INTEL® XEON® This document describes the setup, installation and procedure to run distributed Deep Learning training and inference using TensorFlow with Uber Horovod library on Intel® Xeon® based infrastructure. The steps required to run the benchmark can vary depending on the user’s environment. In case of a large cluster with the order of hundreds or thousands of nodes, we provide sample scripts that use the SLURM scheduler. Alternatively, we also list out steps for smaller systems that may not have such a scheduler configured. Furthermore, we also provide scripts to build a singularity image for ease of deployment. This document has been tested with TensorFlow 1.9.0, Horovod 0.13.11, OpenMPI version 1.10.7, Python 2.7 on CentOS 7 and 7.5. 1.1 TensorFlow Setup and Installation TensorFlow can either be built from source or installed from a pre-built wheel file. The steps to build TensorFlow from source are clearly listed on the official TensorFlow documentation here: https://www.tensorflow.org/install/install_sources . Also refer to the Intel® Best Practices documentation at the end of this document to use the recommended build flags to get the most optimized CPU build. We have consolidated these steps into a simple script build_tensorflow_script, which can be run as follows: ./build_tf.sh <path/to/install/directory> We recommend that the install directory be created on a shared filesystem so that the TensorFlow build is accessible by all nodes in a multi-node training environment. At the prompt, choose “y” to build from source. The script creates a virtual environment and installs TensorFlow in this environment, as opposed to doing a system-wide install. The virtual environment is created in <path/to/install/directory>/virtenv/ , and can be activated as follows: source <path/to/install/directory>/virtenv/bin/activate To deactivate the virtual environment, run: deactivate Alternatively, TensorFlow can be installed from a pre-built wheel available here: https://software.intel.com/en-us/articles/intel-optimized-tensorflow-installation-guide The script build_tf.sh can be used to do this by selecting ‘No’ when prompted about building TensorFlow from source. Note: See section on Troubleshooting for some common problems encountered during the build process. 1.2 Install MPI, if not already installed For OpenMPI: Below are steps to install OpenMPI. If sudo/root access is available: sudo yum -y install openmpi openmpi-devel module avail && module add mpi/openmpi-x86_64 Note: If you get an error ‘module:command not found’ , use the following command: source /etc/profile.d/modules.sh This will install to standard paths, so there is no need to change environment variables. This command installs OpenMPI 1.10.7 as tested on Centos 7.5. If neither sudo/root access is available, build OpenMPI from source. Follow the steps on the OpenMPI page to install and configure OpenMPI. After installation, update PATH and LD_LIBRARY_PATH accordingly to point to this installation. For MVAPICH2: refer to the user guide in the official documentation here: http://mvapich.cse.ohio- state.edu/userguide/ For Intel-MPI: refer to https://software.intel.com/en-us/intel-mpi-library. Add Intel-MPI related variables to PATH by running: source <intel_mpi_install_dir>/bin/mpivars.sh intel64 Version 0.94 Page 4 9/15/2018
6. Best Practices for Scaling Deep Learning Training and Inference with TensorFlow* On Intel® Xeon® 1.3 Install Uber’s Horovod Library Horovod is a distributed training framework for TensorFlow, Keras, and PyTorch, which makes distributed Deep Learning fast and easy to use. Horovod is available as a standalone python package. The installer looks for an existing installation of MPI. Note: In an environment where there are potentially multiple MPI libraries, is important to ensure that only the required MPI libraries are enabled in Horovod environment. This can be done either with the mpi-selector utility, or by manually updating the PATH and LD_LIBRARY_PATH variables to point to the required library. Horovod also requires an existing installation of TensorFlow. In step 1, we show how to install TensorFlow in a Python virtual environment. Before installing Horovod, ensure that the virtual environment is activated. Then install Horovod using the pip installer: pip install --no-cache-dir horovod Verify the installation. If the following steps work without errors, we are ready to run the benchmark. python Python 2.7.13 (default, Aug 1 2017, 16:43:54) [GCC Intel C++ gcc 5.4 mode] on linux2 Type "help", "copyright", "credits" or "license" for more information. >>> import tensorflow as tf >>> import horovod.tensorflow as hvd 1.4 Installing tf_cnn_benchmarks TensorFlow maintains a repository for performance benchmarking of few standard Convolutional Neural Network topologies at https://github.com/tensorflow/benchmarks.git .These benchmarks can be obtained by running: git clone https://github.com/tensorflow/benchmarks.git 1.5 Preparing the ImageNet2012-1K Dataset The dataset needed for performance evaluation is the ImageNet2012-1K dataset available here http:/www.image- net.org/challenges/LSVRC/2012/. The dataset can be obtained by first registering at the ImageNet website (http://image-net.org/download-images) and obtaining the username and access key. The raw images must be converted to the TensorFlow’s TFRecord format which stores the raw image data along with metadata like class info, height, width, and so on. SURFSara, one of our collaborators, identified a key requirement when preprocessing the dataset. In order to achieve State-Of-The-Art (SOTA) convergence after training, shuffling the input classes is very important when creating TFRecords from raw images. There is an existing script located in the tensorflow/tpu repository that can be used to do this: https://github.com/tensorflow/tpu/blob/master/tools/datasets/imagenet_to_gcs.py The script contains several TPU references that must be removed when running on Intel® Xeon®. A version of the original script with the required modifications for CPU and horovod and an accompanying Best Practices document is provided by SURFSara, which can be downloaded from: https://surfdrive.surf.nl/files/index.php/s/xrEFLPvo7IDRARs This script can be used to download the dataset as well as create the TFRecords. Please note that there should be ~400GB disc space available before starting the process, and it might take several hours to complete depending on your network connectivity. Version 0.94 Page 5 9/15/2018
7. Best Practices for Scaling Deep Learning Training and Inference with TensorFlow* On Intel® Xeon® 1.5.1 Steps to download and prepare Dataset Follow the steps below for preparing the ImageNet-1K Dataset using scripts from SURFsara. 1. Untar the <tar_file>.tar.gz downloaded from SURFsara drive above with the command tar –xzvf <tar_file>.tar.gz cd tpu/tools/datasets 2. Download the dataset along with converting it to tf_records format python imagenet_to_gcs.py --local_scratch_dir <path-to-resulting tfrecords> \ --project="TEST_PROJECT" \ --imagenet_username=<username> \ --imagenet_access_key=<access_key> Where “imagenet_username” and “imagenet_access_key” are to be obtained by registering on the Imagenet website as mentioned above. The script does the following to download the data:  Training images ILSVRC2012_img_train.tar are downloaded from http://www.image-net.org/challenges/LSVRC/2012/    This tarball contains multiple tarballs in it. The script then un-tars each one of them and saves it in the form: Training images: train/n03062245/n03062245_4620.JPEG NOTE: in the training dataset, the images are grouped by the labels, meaning that all images in the folder train/n03062245 have the label n03062245. The synset_labels (validation labels) are downloaded from: https://raw.githubusercontent.com/tensorflow/models/master/research/inception/inception/data/imagen et_2012_validation_synset_labels.txt Then, the validation images ILSVRC2012_img_val.tar are downloaded from http://www.image-net.org/challenges/LSVRC/2012/ 1.5.2 Already have the ImageNet-1K Dataset If you have already downloaded the dataset, you can pass the path to the dataset in –raw_data_dir: python imagenet_to_gcs.py --raw_data_dir <path-to-rawimage-dir> -- local_scratch_dir <path-to-resulting-tfrecords> If raw data directory is provided, it should be in the format: o Training images: train/n03062245/n03062245_4620.JPEG o Validation Images: validation/ILSVRC2012_val_00000001.JPEG o Validation Labels: synset_labels.txt Note: If you have a pre-downloaded dataset, please make sure that the folder <path-to-rawimage-dir> has the directory structure specified above. Please make sure the validation labels and validation images are from the same sources as indicated earlier. A mismatch can give lower validation accuracies. The TF_Records can either be then copied on to the local drives of all the nodes, or a high-speed shared file system like Lustre can be used. 1.5.3 Dataset Striped on Lustre While running multi-node experiments on large number of nodes, striping the dataset can give significance performance gains in terms of scaling efficiency. We have found that it can improve scaling efficiency for a 32 node run from ~40% to ~90%, for a stripe count of 64 and stripe size of 32M for ImageNet data. So, conclusion is that Lustre striping makes a big difference, allowing us to have good scaling efficiency at 64-128 nodes, and possibly beyond. Version 0.94 Page 6 9/15/2018
8. Best Practices for Scaling Deep Learning Training and Inference with TensorFlow* On Intel® Xeon® 1.6 Example: Running ResNet-50 with tf_cnn_benchmarks In this section, we describe the command line parameters used for both single and multi-node Training and Inference with ResNet-50 using tf_cnn_benchmarks scripts. 1.6.1 tf_cnn_benchmarks: ResNet-50 Let us first look at the common arguments to tf_cnn_benchmarks for ResNet-50 model: COMMON_ARGS="\ --batch_size=64 \ --model=resnet50 \ --num_inter_threads=2 \ --display_every=5 \ --data_format=NCHW \ --optimizer=momentum \ --device=cpu \ --mkl=TRUE \ --variable_update=horovod \ --horovod_device=cpu \ --local_parameter_device=cpu \ --kmp_blocktime=1" The explanation of the values used are:  --batch_size=64; Number of images/worker to train in parallel  --model=resnet50. This is an ad-hoc pre-determined tag used by tf_cnn_benchmarks to define/use the ResNet-50 v1 model. The other preset model names are available in tf_cnn_benchmarks/model/model_config.py script.  --num_inter_threads=2 or 3; this sets the number of ops that can be executed in parallel.  --display_every=5 means after how many batches will the training loss will be printed in stdout. We have used 5, but any value between 5 & 20 gives useful information on the progress of the training job.  --data_format=NCHW. NCHW format means the dimensions of the tensor containing the input images are in the order of BATCHES, CHANNELS, HEIGHT and WIDTH. In other words, “channels first” as it appears before height and width. Other possible value is NHWC where channels appear last.  --optimizer=momentum is the gradient descent optimizer used in training. In place of Momentum optimizer, you can use adagrad, sgd (stochastic gradient descent), rmsprop, and others.  --device=cpu signifies CPU device to execute the operations  --mkl=True enables the use of Intel® Math Kernel Library® for optimized kernels for blocked matrix multiplication, vector-matric multiplication and other operations  --variable_update=horovod; Use Horovod for gradient synchronization between the training workers.  --horovod_device=cpu; Use CPU to execute the gradient synchronization  --kmp_blocktime=0 or 1; optimal value may vary with topology. This is the time in milliseconds that a thread waits before sleeping after completion of execution. Version 0.94 Page 7 9/15/2018
9. Best Practices for Scaling Deep Learning Training and Inference with TensorFlow* On Intel® Xeon® For training the model to convergence, following additional arguments will need to be included in the COMMON_ARGS for saving check-point and summaries in the appropriate path to directory. --train_dir: directory where model checkpoints and graph are saved --save_model_secs: time in seconds, recurrently save model after every given duration. --init_learning_rate: initial learning rate --num_epochs_per_decay: learning rate is decayed after these many epochs --num_learning_rate_warmup_epochs: Run warmup for these many epochs --learning_rate_decay_factor: learning rate decayed by this factor --summary_verbosity=1: verbosity of summary statistics --save_summaries_steps: save summaries after every given steps 1.6.2 Training on Single-Node with Multiple Workers The key idea here is to use multiple training instances or workers even on a single CPU and divide the cores uniformly across them. In addition to core-pin the workers also use NUMA-aware core affinity and data placement to exploit local memory channels of the sockets. The detailed methodology and analysis are presented at https://software.intel.com/en-us/articles/boosting-deep-learning-training-inference-performance-on-xeon-and-xeon- phi One example is showcased below. In this scenario, we are running training ResNet-50 on 2S Intel® Xeon® CPU. Platform Configuration: 2S Intel® Xeon® Gold 6148 CPU @ 2.40GHz, 20 cores/CPU, HT enabled, turbo disabled, scaling governor set to “performance” via intel_pstate driver, 192GB DDR4-2666 ECC RAM. CentOS Linux release 7.3.1611 (Core), Linux kernel 3.10.0-514.10.2.el7.x86_64. SSD: Intel® SSD DC S3700 Series. For a single-node using Horovod, a ResNet-50 training job with 4 TensorFlow worker instances per node can be launched as described below. Note: Several parameters including OMP_NUM_THREADS, affinity domains, etc., need to be set according to the number of physical cores available. To know which CPUs to bind the processes to, run “numactl –H” and observe how the CPUs are mapped to sockets and nodes. The MPI tasks partitioning on the sockets of the node in this case is shown in figure 1. ½-Skt-0 ½-Skt-1 ½-Skt-0 ½-Skt-1 Figure 1. MPI tasks Partitioning across Dual-Socket Intel® Xeon® Platform Version 0.94 Page 8 9/15/2018
10. Best Practices for Scaling Deep Learning Training and Inference with TensorFlow* On Intel® Xeon® The MPI task Layout is shown in figure2 below: Compute Node 0 Socket 0 Core 0 Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7 Core 8 Core 9 core 10 Core 11 Core 12 Core 13 Core 14 Core 15 Core 16 Core 17 Core 18 Core 19 Task 0 Task 0 Task 0 Task 0 Task 0 Task 0 Task 0 Task 0 Task 0 Task 0 Task 1 Task 1 Task 1 Task 1 Task 1 Task 1 Task 1 Task 1 Task 1 Task 1 Socket 1 Core 20 Core 21 Core 22 Core 23 Core 24 Core 25 Core 26 Core 27 Core 28 Core 29 Core 30 Core 31 Core 32 Core 33 Core 34 Core 35 Core 36 Core 37 Core 38 Core 39 Task 2 Task 2 Task 2 Task 2 Task 2 Task 2 Task 2 Task 2 Task 2 Task 2 Task 3 Task 3 Task 3 Task 3 Task 3 Task 3 Task 3 Task 3 Task 3 Task 3 Figure 2. MPI task layout on host0 1.6.3 Using OpenMPI HOROVOD_FUSION_THRESHOLD=134217728 \ mpirun -np 4 \ --map-by ppr:2:socket:pe=10 \ -H localhost \ --report-bindings \ --oversubscribe \ -x HOROVOD_FUSION_THRESHOLD \ -x OMP_NUM_THREADS=10 \ python /path/to/tf_cnn_benchmarks.py $COMMON_ARGS \ --num_intra_threads=$OMP_NUM_THREADS \ --data_dir=/path/to/imagenet-1k-TFRecords \ --data_name=<dataset_name> In the above command line, use localhost to run the MPI job locally. Otherwise, use the target hostname on which you wish to run the workload. $COMMON_ARGS contains the arguments to the benchmark script. Rest of the arguments and their recommended values are:  HOROVOD_FUSION_THRESHOLD=user defined size in bytes, default is 67108864(64Mbytes). This sets the size of the fusion buffer for Horovod’s Tensor Fusion, which controls how tensors are batched to do allreduce. For more information please see: https://github.com/uber/horovod/blob/master/docs/tensor-fusion.md  --np 4: runs 4 copies of the program on the given node(s).  --map-by ppr:2:socket:pe=10: starts two processes per socket and binds each of them to 10 processing elements (pe), where “ppr” here stands for processes per resource, and “pe” should correspond to the number of physical cores per socket. The number for “pe” should be the same as num_intra_threads as described later.  -H localhost: run the copies of the program on localhost  --report-bindings: flags provides a verbose output of the mapping of cores to processes.  --oversubscribe: is necessary to run multiple processes on a node.  OMP_NUM_THREADS specifies the number of threads to be used by the OpenMP (shared memory) library used by Eigen and Intel® MKL. This should be set to number of physical cores (same as num_intra_threads).  python /path/to/tf_cnn_benchmarks.py $COMMON_ARGS: python program to run with CLI arguments  --num_intra_threads=set to (number of physical cores per node)/(number of workers per node). The idea is to equally divide cores among the workers. This sets the number of threads an op can use to parallelize execution, used by Eigen and Intel® Math Kernel Library®.  --data_dir: path to dataset TFRecords  --data_name: dataset name Version 0.94 Page 9 9/15/2018
11. Best Practices for Scaling Deep Learning Training and Inference with TensorFlow* On Intel® Xeon® 1.6.4 Using Intel® MPI mpiexec \ --machinefile <hostfile> \ -genv I_MPI_DEBUG 4 \ -np 4 \ --ppn 4 \ --genv OMP_NUM_THREADS $OMP_NUM_THREADS \ --genv I_MPI_PIN_DOMAIN 20:compact \ --genv HOROVOD_FUSION_THRESHOLD 134217728 \ python /path/to/tf_cnn_benchmarks.py $COMMON_ARGS \ --num_intra_threads=$OMP_NUM_THREADS \ --data_dir=/path/to/imagenet-1k-TFRecords \ --data_name=<dataset_name> Where hostfile is the file containing the hostname.  I_MPI_DEBUG=4 prints out the debug information about process pinning. Please refer https://software.intel.com/en-us/mpi-developer-reference-linux-other-environment-variables for more details.  I_MPI_PIN_DOMAIN “20:compact” maps each process to 20 logical processors located as close to each other in terms of common resources. This should be set according to the number of available physical cores on the system. Please refer https://software.intel.com/en-us/mpi-developer-reference-linux-interoperability-with- openmp-api for more details. 1.6.5 Using MVAPICH2 /usr/mpi/gcc/mvapich2-2.2-hfi/bin/mpirun_rsh \ --export -np 4 \ --hostfile <hostfile> \ MV2_SHOW_CPU_BINDING=1 \ OMP_NUM_THREADS=10 \ MV2_ENABLE_AFFINITY=1 \ MV2_CPU_MAPPING=0-9,40-49:10-19,50-59:20-29,60-69:30-39,70-79 \ HOROVOD_FUSION_THRESHOLD 134217728 \ python /path/to/tf_cnn_benchmarks.py $COMMON_ARGS \ --num_intra_threads=$OMP_NUM_THREADS \ --data_dir=/path/to/imagenet-1k-TFRecords \ --data_name=<dataset_name> Where hostfile is the file containing the hostname.  MV2_SHOW_CPU_BINDING=1 displays the CPU bindings  MV2_ENABLE_AFFINITY=1 and MV2_CPU_MAPPING are used to map each process to specific cores. This ensures that there is no thread migration to different sockets. To know which CPUs to bind the processes to, run “numactl –H” and observe how the CPUs are mapped to sockets and nodes. Version 0.94 Page 10 9/15/2018
12. Best Practices for Scaling Deep Learning Training and Inference with TensorFlow* On Intel® Xeon® 1.6.6 Training on Multiple Nodes with Multiple Workers To scale to multiple nodes, we spawn multiple workers per node and utilize Horovod over MPI to synchronize gradients (as shown in Section 3.2). The MPI command looks different now as it must include all the host names. Example command line parameters are shown to train ResNet-50 model on multiple 2S Intel® Xeon® processors saving model periodically in a model check-point directory. Cluster Configuration: The 2x Intel® 2S Xeon® Gold 6148 CPU platforms are connected with Intel® Omni-Path Architecture Host Fabric, Intel® OPA Interface Driver version 10.4.2.0.7. SSD: Intel® SSD DC S3700 Series. For a training job on 2 nodes with 4 TensorFlow workers per node using OpenMPI is launched as follows: HOROVOD_FUSION_THRESHOLD=134217728 \ mpirun --np 8 \ --hostfile <hostfile> \ --map-by ppr:2:socket:pe=10 \ --report-bindings \ --oversubscribe \ -x LD_LIBRARY_PATH \ -x HOROVOD_FUSION_THRESHOLD -x OMP_NUM_THREADS=10 \ python /path/to/tf_cnn_benchmarks.py $COMMON_ARGS \ --num_intra_threads=$OMP_NUM_THREADS \ --data_dir=/path/to/imagenet-1k-TFRecords \ --data_name=<dataset_name> \ --train_dir=/path/to/ model-checkpoint-dir \ --save_model_secs=<time-in-seconds-to-save-models-periodically> It is important to ensure that mpirun binary, path to the training dataset and path to the tf_cnn_benchmarks are consistent in all the nodes and is in the PATH environment variables. 1.6.7 Evaluating the Accuracy of the Trained Model Inference is the process to evaluate the classification or (prediction) score of the trained model on a validation dataset (images in case of ResNet-50). Due to artifacts of the model restore method in TensorFlow, the best practice is to repeat all the command line parameters used during training for inference with the evaluation flag set to True. Hence, we are going to use the horovod variable update command line parameters similar to training although they are not relevant for inference. In our example for ResNet-50 model, evaluation is run with and rest of the training parameters as shown below. Version 0.94 Page 11 9/15/2018
13. Best Practices for Scaling Deep Learning Training and Inference with TensorFlow* On Intel® Xeon® Platform Configuration: 2S Intel® Xeon® Gold 6148 CPU @ 2.40GHz, 20 cores/CPU, HT enabled, turbo disabled, scaling governor set to “performance” via intel_pstate driver, 192GB DDR4-2666 ECC RAM. CentOS Linux release 7.3.1611 (Core), Linux kernel 3.10.0-514.10.2.el7.x86_64. SSD: Intel® SSD DC S3700 Series. mpirun --np 8 \ --hostfile <hostfile> \ --map-by ppr:2:socket:pe=10 \ --report-bindings \ --oversubscribe \ -x LD_LIBRARY_PATH \ -x HOROVOD_FUSION_THRESHOLD -x OMP_NUM_THREADS=10 \ python /path/to/tf_cnn_benchmarks.py $COMMON_ARGS \ --num_intra_threads=$OMP_NUM_THREADS \ --data_dir=/path/to/imagenet-1k-validation-TFRecords \ --train_dir=/path/to/model-checkpoint-dir \ --num_epochs=1 \ --data_name=<dataset_name> \ --eval=True Ensure to use appropriate executable according to the flavor of MPI you are using. Note the path to the data directory must point to validation dataset files, not training files. Also, the path to the checkpoint directory is passed as the train_dir. The required files in the checkpoint directory are: o checkpoint – contains the latest checkpoint number o graph.pbtxt – the text version of the protocol buffer graph definition. This file contains the operation names and its inputs and outputs o model.ckpt – Model checkpoint o model.ckpt.index – Index of the weights and tensors o model.ckpt.data – Weights of the model checkpoint The output of running InageNet2012-1K validation dataset (50K Images) for 1 epoch i.e. ONCE over the entire validation records for ResNet-50 trained model is shown below: Accuracy @ 1 = 0.7513 Accuracy @ 5 = 0.9234 1.6.8 Multi-Stream Inference on the Trained Model We create multiple independent deep learning inference framework instances, and set affinity for each instance to a partitioned set of cores and memory locality on single or multiple socket systems. Figure 2 shows an example of 8 framework instances, each concurrently processing a separate stream of input data on affinitized threads and memory locality. Depending on the inference batch size and system memory capacity, one could have even larger number of frameworks and streams, each mapped to different cores. In this scenario, we have K workers per node. The performance is measured by the total throughput in images/sec per node with K streams of input each at a given batch size BSize and processed by the K workers. The total number of batches per node on K workers for inference would then be equal to K*BSize. Version 0.94 Page 12 9/15/2018
14. Best Practices for Scaling Deep Learning Training and Inference with TensorFlow* On Intel® Xeon® Inference Stream-0 BS=X 1/4 Skt-0 1/4 Skt-1 Inference Stream-4 BS=X Inference Stream-1 BS=X 1/4 Skt-0 1/4 Skt-1 Inference Stream-5 BS=X 1/4 Skt-0 1/4 Skt-1 1/4 Skt-0 1/4 Skt-1 Inference Stream-2 BS=X Inference Stream-3 BS=X Inference Stream-6 BS=X Inference Stream-7 BS=X Figure 2. Sub-socket Partitioning across Dual-Socket Intel® Xeon® Platforms for Multiple Inference Streams 1.6.9 Running Inference on the Trained Model To run Inference on the trained model, we use the same command that was used for evaluating the accuracy with following modifications. data_dir would need to be pointed to the inference dataset and train_dir needs to point to the directory containing the checkpoints for inference model. The commands below shows how one can run 8 Inference streams on 2S Intel® Xeon® Gold 6148 platform with 20 cores/CPU, each stream affinitized to 5 cores. Note the use of numactl and KMP_AFFINITY for improved performance. TF_CNN_BMARKS=/path/to/tf_cnn_benchmarks/ DATA_DIR=/path/to/imagenet-1k-validation-TFRecords/ TRAIN_DIR=/path/to/model-checkpoint-dir/ export OMP_NUM_THREADS=5 # 20C/skt * 2 Skt / Num_Streams export KMP_BLOCKTIME=0 NUMA_DOMAIN0=0 NUMA_DOMAIN1=1 KMP_AFFINITY='granularity=thread,proclist=[0-4,40-44],explicit,verbose' \ taskset -c 0-4,40-44 numactl -m $NUMA_DOMAIN0 \ python $TF_CNN_BMARKS/tf_cnn_benchmarks.py $COMMON_ARGS \ --num_intra_threads=$OMP_NUM_THREADS --eval=True \ --train_dir=$TRAIN_DIR --data_dir=$DATA_DIR & KMP_AFFINITY='granularity=thread,proclist=[5-9,45-49],explicit,verbose' \ taskset -c 5-9,45-49 numactl -m $NUMA_DOMAIN0 \ python $TF_CNN_BMARKS/tf_cnn_benchmarks.py $COMMON_ARGS \ --num_intra_threads=$OMP_NUM_THREADS --eval=True \ --train_dir=$TRAIN_DIR --data_dir=$DATA_DIR & Version 0.94 Page 13 9/15/2018
15. Best Practices for Scaling Deep Learning Training and Inference with TensorFlow* On Intel® Xeon® KMP_AFFINITY='granularity=thread,proclist=[10-14,50-54],explicit,verbose' \ taskset -c 10-14,50-54 numactl -m $NUMA_DOMAIN0 \ python $TF_CNN_BMARKS/tf_cnn_benchmarks.py $COMMON_ARGS \ --num_intra_threads=$OMP_NUM_THREADS --eval=True \ --train_dir=$TRAIN_DIR --data_dir=$DATA_DIR & KMP_AFFINITY='granularity=thread,proclist=[15-19,55-59],explicit,verbose' \ taskset -c 15-19,55-59 numactl -m $NUMA_DOMAIN0 \ python $TF_CNN_BMARKS/tf_cnn_benchmarks.py $COMMON_ARGS \ --num_intra_threads=$OMP_NUM_THREADS --eval=True \ --train_dir=$TRAIN_DIR --data_dir=$DATA_DIR & KMP_AFFINITY='granularity=thread,proclist=[20-24,60-64],explicit,verbose' \ taskset -c 20-24,60-64 numactl -m $NUMA_DOMAIN1 \ python $TF_CNN_BMARKS/tf_cnn_benchmarks.py $COMMON_ARGS \ --num_intra_threads=$OMP_NUM_THREADS --eval=True \ --train_dir=$TRAIN_DIR --data_dir=$DATA_DIR & KMP_AFFINITY='granularity=thread,proclist=[25-29,65-69],explicit,verbose' \ taskset -c 25-29,65-69 numactl -m $NUMA_DOMAIN1 \ python $TF_CNN_BMARKS/tf_cnn_benchmarks.py $COMMON_ARGS \ --num_intra_threads=$OMP_NUM_THREADS --eval=True \ --train_dir=$TRAIN_DIR --data_dir=$DATA_DIR & KMP_AFFINITY='granularity=thread,proclist=[30-34,70-74],explicit,verbose' \ taskset -c 30-34,70-74 numactl -m $NUMA_DOMAIN1 \ python $TF_CNN_BMARKS/tf_cnn_benchmarks.py $COMMON_ARGS \ --num_intra_threads=$OMP_NUM_THREADS --eval=True \ --train_dir=$TRAIN_DIR --data_dir=$DATA_DIR & KMP_AFFINITY='granularity=thread,proclist=[35-39,75-79],explicit,verbose' \ taskset -c 35-39,75-79 numactl -m $NUMA_DOMAIN1 \ python $TF_CNN_BMARKS/tf_cnn_benchmarks.py $COMMON_ARGS \ --num_intra_threads=$OMP_NUM_THREADS --eval=True \ --train_dir=$TRAIN_DIR --data_dir=$DATA_DIR & Version 0.94 Page 14 9/15/2018
16. Best Practices for Scaling Deep Learning Training and Inference with TensorFlow* On Intel® Xeon® 2. USING SINGULARITY 2.1 Installing Singularity If Singularity is already installed on your cluster/system, then you can skip this step. If not, install Singularity as root/sudo user using the Script_4 below by replacing the --prefix path accordingly. Latest installation instructions are also available at https://singularity.lbl.gov/install-linux Also refer to instructions at http://opensciencegrid.org/docs/worker-node/install-singularity/#enabling-unprivileged- mode-for-singularity for more instructions and options for installing singularity on your cluster. 2.2 Building Singularity Image If you already have a Singularity image/container, then you skip this step. If not, build a Singularity image comprising of CentOS, Intel optimized TensorFlow, Horovod, OpenMPI and TensorFlow benchmarks as root/sudo user sudo /path/to/singularity/install/bin/singularity build tf-horovod.simg tf-horovod.singularity where tf-horovod.singularity is the Singularity recipe file that defines the configuration of the image. If you want the image to be writable, you can pass the –writable flag while building and invoking the container. For more details, refer to the documentation at https://singularity.lbl.gov/docs-build-container#--writable . Below are two recipe files, either of which can be used based on your use case. The singularity image can be built with the pre-built optimized tensorflow wheel pulled from a URL or from conda. A sample recipe file for this is provided in Script_5. Alternatively, one can also build a singularity image using a tensorflow wheel that was built from source on the local file system. The sample recipe file for this is Script_6 . 2.3 Running TensorFlow With Singularity Check the environment of the Singularity Image with singularity run [user@linux ~]$ singularity run tf-horovod.simg This is a Singularity image containing Intel optimized TensorFlow installation with Horovod (OpenMPI) Operating System: CentOS Linux release 7.5.1804 (Core) GCC: gcc (GCC) 6.2.0 TensorFlow: 1.9.0 Horovod: 0.13.11 OpenMPI: 1.10.7 TensorFlow Benchmarks: /opt/tensorflow-benchmarks Run TensorFlow Benchmarks using singularity shell: For interactive development, shell into the image: [user@linux ~]$ singularity shell tf-horovod.simg Singularity: Invoking an interactive shell within container... Singularity tf-horovod.simg:~ > To run using singularity shell, start a singularity shell as described above, and launch the mpirun command (described in section: Running tf_cnn_benchmarks (Example ResNet-50) above). Make a note to use the right path for the tensorflow benchmarks. This path should point to the location of tf_cnn_benchmarks within the image where they were cloned while creating the image (eg.: "/opt/tensorflow-benchmarks/"). Version 0.94 Page 15 9/15/2018
17. Best Practices for Scaling Deep Learning Training and Inference with TensorFlow* On Intel® Xeon® Run TensorFlow Benchmarks using singularity exec: To run using singularity exec, the same version of OpenMPI needs to exist within the image, and on the host system. For example, if OpenMPI 1.10.7 is installed on the host system, make sure the image is built with the same OpenMPI 1.10.7. Failure to match the MPI versions might cause unexpected failures. The Script_7 (run_singularity_multiworker.sh) included in this document uses the ‘singularity exec’ command to launch the multi-node tf_cnn_benchmark run with ResNet 50. This script should be launched from the host machine. Eg: [user@linux ~]$chmod 755 run_singularity_multiworker.sh [user@linux ~]$./run_singularity_multiworker.sh Note that the script uses --bind to bind the directory containing the data on the host to the image file system. This enables us to specify the data directory and data name while launching the benchmarks. Use --bind <path/to/some/host/directory>:<path/to/directory/in/image> while launching singularity shell/exec to bind the host directory to the specified directory in the image. Some additional information about binding directories is available at http://singularity.lbl.gov/docs-mount. This can be used to bind the directory containing the ImageNet TF_Records to the image and running the benchmarks. Some HPC clusters (e.g. TACC) do not allow user-specified binding. In case of TACC, some directories (e.g. /home1, /work, /scratch) are bound directly. A bind point needs to exist for these paths in the image. In that case, while building the image, these directories can be created in the image, and the data on the host can be stored in one of these to be accessed from within the image. To run the benchmarks using dummy data, just exclude the arguments data_dir and data_name from the run command. Version 0.94 Page 16 9/15/2018
18. Best Practices for Scaling Deep Learning Training and Inference with TensorFlow* On Intel® Xeon® 3. USING NFS AND SLURM While the previous section showed the job command line, the user may need to change how the jobs are launched depending on the environment. Large scale systems with thousands of nodes typically use schedulers such as SLURM to launch and manage jobs. We provide example scripts to run the benchmark in this environment. Additionally, we also cover alternatives in smaller scale systems that may not have such a scheduler system in place. The scripts include the run-time optimization Best Practices described above. The data set must be preprocessed as described in the previous section and copied onto the local SSDs of all nodes. 3.1 Using NFS Mounted File System If your cluster has an NFS mounted drive, the TensorFlow installation and the benchmarks can reside on the NFS mounted drive. However, the dataset must preferably reside on local disc storage (preferably on SSDs) on all nodes as opposed to NFS drives, unless Lustre is being used.      Ensure that you set up all nodes similarly (gcc version, MPI version) as described in the steps above Install TensorFlow in a Python virtual environment as described in sections 1 and 2 by creating the virtualenv directory on the NFS mounted drive Install Horovod in the virtualenv following the steps described above Clone the tf_cnn_benchmarks in the NFS mounted directory mkdir <NFS_dir>/tensorflow_benchmarks cd <NFS_dir>/tensorflow_benchmarks git clone https://github.com/tensorflow/benchmarks.git Run the benchmark by adapting the sample command line above to the cluster environment 3.2 Using SLURM Scheduler We provide example scripts showing how to launch jobs with SLURM. The scripts provided use the Best Practices from these optimizations listed in the blog above. In the scripts given in Section 8.1, edit the #SBATCH parameters accordingly to change the number of nodes and ranks per node. Version 0.94 Page 17 9/15/2018
19. Best Practices for Scaling Deep Learning Training and Inference with TensorFlow* On Intel® Xeon® 4. TENSORFLOW BUILD INSTRUCTIONS 4.1 Building TensorFlow 1. 2. Clone TensorFlow from: https://github.com/tensorflow/tensorflow, and checkout r1.9.0. Build Tensorflow 1.9 with instructions from AI Products Group/Intel TensorFlow optimization team described in the Appendix at the end of this document described below. 3. The process for building with MKL ML or MKL DNN is very similar. No specific steps are needed during configuration to build Tensorfow using MKL. It is automatically configured when you run configure. You need to only add --config=mkl to bazel build. In addition, make sure to set $TEST_TMPDIR to a local directory, instead of an NFS mount directory, or some random errors could happen. 4. When you get to the question about "copt" parameters, just accept the default. You'll specify the flags explicitly in the bazel build command 5. Use the default for all other settings. Choose as following: a. No cloud b. No Hadoop c. No opencl d. No rdma/verbs e. No cuda f. No mpi g. Yes xla, xla may give improved performance 6. Building for MKL DNN: Broadwell/Skylake: Please use the following build command: 7. bazel build --config=mkl --copt="-mfma" --copt="-mavx2" --copt="- march=broadwell" --copt="-O3" -s -c opt //tensorflow/tools/pip_package:build_pip_package 8. 9. When everything finally works, this is what you'll see: Success! a. Target //tensorflow/tools/pip_package:build_pip_package up-to-date: bazel-bin/tensorflow/tools/pip_package/build_pip_package Building the Python Wheel a. Remove any existing wheels b. rm ~/tmp/*.whl c. From the root directory of your TensorFlow sources, create the whl file: ./bazel-bin/tensorflow/tools/pip_package/build_pip_package ~/tmp 10. Installing and running TensorFlow a. Remove any existing TensorFlow installations b. pip uninstall tensorflow 11. Install the wheel for your user account. a. pip install ~/tmp/*.whl --user #This will install any missing dependencies into your user profile b. pip install ~/tmp/*.whl --user --no-deps #This will skip installing dependencies Make sure everything is working 12. Try importing the TensorFlow lib. If you don't get any errors, all is well a. python b. >>> import tensorflow c. >>> quit() Version 0.94 Page 18 9/15/2018
20. Best Practices for Scaling Deep Learning Training and Inference with TensorFlow* On Intel® Xeon® 13. Try a simple kernel test a. python <tensorflow src directory>/tensorflow/python/kernel_tests/relu_op_test.py Build Notes b. c. d. e. -mavx512f -march=broadwell and other AVX512 flags need gcc4.9 or higher (Recommended to use gcc5.4 or higher) Currently, Tensorflow build with Intel® C/C++ compilers has some issues. To use an alternate compiler (e.g. gcc 6.3): change PATH to point to alternate compiler: f. export PATH=/opt/intel/gcc6.3/bin:$PATH g. add -L flag to bazel build command line above: --copt="-L/opt/intel/gcc6.3/lib64" h. change LD_LIBRARY_PATH when running the TensorFlow programs to point to new GLIBC: i. export LD_LIBRARY_PATH=/opt/intel/gcc6.3/lib64:$LD_LIBRARY_PATH For debug builds (no optimization), use i. bazel build --config=mkl --copt="-DEIGEN_USE_VML" --copt="-g" -s -c dbg //tensorflow/tools/pip_package:build_pip_package j. For debug symbols only add --copt="-g" to bazel build command. 4.2 Install TensorFlow using script The build_tensorflow_script can be used to install tensorflow in a virtual environment. At the prompt, choose “y” to build from source. The script creates a virtual environment and installs TensorFlow in this environment, as opposed to doing a system-wide install. The virtual environment is created in <path/to/install/directory>/virtenv/ , and can be activated as follows: source <path/to/install/directory>/virtenv/bin/activate To deactivate the virtual environment, run: deactivate Version 0.94 Page 19 9/15/2018
21. Best Practices for Scaling Deep Learning Training and Inference with TensorFlow* On Intel® Xeon® 5. SAMPLE SCRIPTS 5.1 TensorFlow build script In the script below, change the highlighted parts according to the TensorFlow version that you want to work with. The script saves the TensorFlow wheel that is installed in the virtual environment (either built from source or downloaded) in the folder <path/to/install/directory>/tf_whl/. #!/bin/bash set -e set -o pipefail if [[ $# then echo echo exit fi -lt 1 ]] "Usage $0 <dir>" "TensorFlow will be cloned/installed into <dir>" 1 dir=$1 rm -rf $dir export PYTHONPATH=`which python` echo "Default python found at $PYTHONPATH" while true; do read -p "Do you want to use this python? [y/n] " yn case $yn in [Yy]* ) py_ins=1; break;; [Nn]* ) py_ins=0; break;; * ) echo "Please answer y/n.";; esac done if [[ $py_ins -eq 0 ]] then read -e -p "Enter location of python to be used: " new_path python_vers=`$new_path --version` echo "Python at $new_path, of version $python_vers" export PYTHONPATH=$new_path fi while true; do read -p "Do you want to build tensorflow from source? [y/n] " yn case $yn in [Yy]* ) tf_ins=1; break;; [Nn]* ) tf_ins=0; break;; * ) echo "Please answer y/n.";; esac done clonedir=`realpath $dir` mkdir -p $clonedir cd $clonedir if [[ $tf_ins -eq 1 ]] then echo "Building from source at: $clonedir" # Check GCC version minv="5.2.0" gccv=`gcc --version | grep "(GCC)" | awk '{print $3}'` if [ "$(printf '%s\n' $minv $gccv | sort -V | head -n 1)" != "$minv" ]; then echo "Need a newer GCC than $gccv" exit fi Version 0.94 Page 20 9/15/2018
22. Best Practices for Scaling Deep Learning Training and Inference with TensorFlow* On Intel® Xeon® [[ $(type -P bazel) ]] || { echo "Could not find bazel. Is it in PATH?" 1>&2; exit 1; } git clone https://github.com/tensorflow/tensorflow.git cd tensorflow git checkout r1.9 testdir=/tmp/$USER whldir="$testdir/tf_whl" mkdir -p $whldir export TEST_TMPDIR=$testdir # TF related env var export TF_NEED_GCP=0 export TF_NEED_HDFS=0 export TF_NEED_JEMALLOC=1 export TF_NEED_OPENCL=0 export TF_NEED_CUDA=0 export TF_NEED_GDR=0 export TF_CUDA_CLANG=0 export TF_ENABLE_XLA=0 export TF_ENABLE_GDR=0 export TF_NEED_S3=0 export TF_NEED_KAFKA=0 export TF_NEED_OPENCL_SYCL=0 export TF_NEED_VERBS=0 export TF_NEED_MPI=0 export TF_SET_ANDROID_WORKSPACE=0 export CC_OPT_FLAGS="-march=broadwell --copt=\"-mfma\" --copt=\"-mavx2\" --copt=\"-O3\" " echo "Configuring tensorflow build..." ./configure bazel build --config mkl --copt="-mavx2" --copt="-O3" --copt="-mfma" --copt="- march=broadwell" -s -c opt //tensorflow/tools/pip_package:build_pip_package cd $clonedir/tensorflow echo "Building wheel..." bazel-bin/tensorflow/tools/pip_package/build_pip_package $whldir else echo "Downloading Optimized pre-built wheel..." whldir="$clonedir/tf_whl" mkdir -p $whldir cd $whldir wget https://storage.googleapis.com/intel-optimized-tensorflow/tensorflow-1.9.0-cp27- cp27mu-linux_x86_64.whl fi virtdir="$clonedir/virtenv" echo "Creating virtualenv directory in $virtdir..." mkdir -p $virtdir cd $virtdir echo "Creating virtualenv..." $PYTHONPATH -m virtualenv $virtdir whl=`ls $whldir/*.whl` echo "$whl" cd $virtdir source ./bin/activate echo "Installing wheel in virtualenv..." pip install --upgrade pip pip install $whl echo "TensorFlow is installed in $virtdir using wheel $whl" Script 1: build_tf.sh: file to either build tensorflow from source, or download the pre-built Intel optimized wheel and install in a python virtual environment Version 0.94 Page 21 9/15/2018
23. Best Practices for Scaling Deep Learning Training and Inference with TensorFlow* On Intel® Xeon® 5.2 SLURM scripts Here are two sample scripts, skx_2nodes.job (Script 2) and run.sh (Script 3). Script 2 controls the arguments to the multi-node job, and Script 3 controls the arguments to the python script. The Script 2 runs the script 3. #!/bin/bash #SBATCH #SBATCH #SBATCH #SBATCH #SBATCH #SBATCH #SBATCH -J -o -e -N -n -p -t skx_resnet50 out_skx_resnet50_%j err_skx_resnet50_%j 2 8 skx-normal 00:45:00 cur_date=`date +%F-%H-%M-%S` model="resnet50" # edit result directory path result_dir="path_to_res_dir" mkdir -p ${result_dir} mkdir -p ${result_dir}/train curdir=`pwd` script="${curdir}/run.sh" echo "Running script $script" unset OMP_NUM_THREADS unset KMP_BLOCKTIME unset KMP_AFFINITY export export export export export export OMP_NUM_THREADS=24 KMP_BLOCKTIME=1 I_MPI_FABRICS="shm:tmi" I_MPI_TMI_PROVIDER="psm2" I_MPI_PIN_DOMAIN="socket" I_MPI_FALLBACK=0 # optional for debug export I_MPI_DEBUG="3" export I_MPI_DEBUG_OUTPUT="${result_dir}/debug_%r.dbg" thresh=$(( 16 * 1024 * 1024 )) unset HOROVOD_FUSION_THRESHOLD export HOROVOD_FUSION_THRESHOLD=$thresh mpienv="-genv I_MPI_DEBUG $I_MPI_DEBUG -genv LD_LIBRARY_PATH $LD_LIBRARY_PATH -genv HOROVOD_FUSION_THRESHOLD $HOROVOD_FUSION_THRESHOLD -genv OMP_NUM_THREADS $OMP_NUM_THREADS - genv KMP_BLOCKTIME $KMP_BLOCKTIME -genv I_MPI_FABRICS $I_MPI_FABRICS -genv I_MPI_TMI_PROVIDER $I_MPI_TMI_PROVIDER -genv I_MPI_PIN_DOMAIN $I_MPI_PIN_DOMAIN -genv I_MPI_FALLBACK $I_MPI_FALLBACK" module load impi which mpirun mpirun --np 8 $mpienv -l ${script} ${thresh} ${result_dir} ${model} mv out_skx_resnet* ${result_dir} mv err_skx_resnet* ${result_dir} # For TACC environment, ibrun is recommended # export IBRUN_TASKS_PER_NODE=4 # ibrun --np 8 ${script} ${thresh} ${result_dir} ${model} Script 2: Example skx_2nodes.job sample file launches the batch job by defining the SBATCH parameters for 2 nodes of Skylake, and launches run.sh with mpirun. This is a sample script to run on TACC, and uses Intel MPI. Version 0.94 Page 22 9/15/2018
24. Best Practices for Scaling Deep Learning Training and Inference with TensorFlow* On Intel® Xeon® #!/bin/bash if [ $# -lt 1 ] then echo "Usage: $0 fusion_threshold" exit 1 fi killall -9 python thresh=$1 resdir=$2 model=$3 train_dir=$resdir/train total_procs=${SLURM_NPROCS} num_nodes=$SLURM_NNODES procs_per_node=`echo ${SLURM_NPROCS}/$SLURM_NNODES | bc` if [ ${num_nodes} == "" ] then echo "SLURM_NNODES returned $SLURM_NNODES" exit 1 fi script="/path/to/tensorflow/benchmarks/scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py" intra_threads=24 inter_threads=2 num_batches=500 data_dir="/tmp/imgnet/" batch_size=`echo 256/${procs_per_node} | bc` host=$(hostname) module load impi env lscpu echo "Num nodes: ${num_nodes} Node: $host total procs: $total_procs batch size: $batch_size intra threads: $intra_threads" args="--batch_size=$batch_size --model=resnet50 \ --num_intra_threads $OMP_NUM_THREADS \ --num_inter_threads 2 \ --display_every 5 \ --data_format NCHW \ --optimizer momentum \ --device cpu \ --enable_layout_optimizer=TRUE" cmd="cd /path/to/virtualenv/virtenv; source ./bin/activate; python -u $script --model $model $args --mkl=TRUE \ --variable_update=horovod \ --horovod_device=cpu \ --local_parameter_device=cpu \ --kmp_blocktime=1 \ --enable_layout_optimizer=TRUE; deactivate " echo $cmd eval $cmd Script 3: run.sh Launching Job with SLURM. run.sh controls launching the python script and its arguments Version 0.94 Page 23 9/15/2018
25. Best Practices for Scaling Deep Learning Training and Inference with TensorFlow* On Intel® Xeon® 5.3 Singularity scripts 5.3.1 Install script Edit the highlighted portions below to change the version and the path where singularity is to be installed #!/bin/bash VERSION=2.5.1 sudo yum –y install libarchive-devel sudo yum –y install squashfs-tools wget https://github.com/singularityware/singularity/releases/download/$VERSION/singularity- $VERSION.tar.gz tar xvf singularity-$VERSION.tar.gz cd singularity-$VERSION ./configure --prefix=/path/to/where/singularity/will/be/installed make sudo make install Script 4: Installing Singularity 5.3.2 Recipe file for tensorflow wheel downloaded from a URL Bootstrap: docker From: centos:latest %setup export SINGULARITY_SHELL=/bin/bash %post -c /bin/bash # If your environment requires proxy to reach internet, then export the http, https proxy variables accordingly export http_proxy=http://proxy-server-name:port export https_proxy=http://proxy-server-name:port yum clean all rm -rf /var/cache/yum yum -y install epel-release yum -y groupinstall "Development Tools" yum -y install wget yum -y install git #installing gcc yum -y install gmp-devel mpfr-devel libmpc-devel glibc-devel.i686 libgcc.i686 gcc-c++ wget https://ftp.gnu.org/gnu/gcc/gcc-6.2.0/gcc-6.2.0.tar.gz tar -xzf gcc-6.2.0.tar.gz mkdir build cd build ../gcc-6.2.0/configure --prefix=/opt/gcc-6.2.0 make -j 20 make install #adding GCC to $PATH export PATH=/opt/gcc-6.2.0/bin:$PATH export LD_LIBRARY_PATH=/opt/gcc-6.2.0/lib64:/opt/gcc-6.2.0/lib #using anaconda, conda’s default tensorflow is Intel optimized wget https://repo.anaconda.com/archive/Anaconda2-5.2.0-Linux-x86_64.sh bash Anaconda2-5.2.0-Linux-x86_64.sh -b -p /opt/anaconda2 Version 0.94 Page 24 9/15/2018
26. Best Practices for Scaling Deep Learning Training and Inference with TensorFlow* On Intel® Xeon® export PATH=/opt/anaconda2/bin:$PATH rm -rf Anaconda2-5.2.0-Linux-x86_64.sh yum -y install openmpi openmpi-devel yum -y install environment-modules source /etc/profile.d/modules.sh module add mpi/openmpi-x86_64 #In case module throws an error (eg. on TACC), use: # export PATH=/usr/lib64/openmpi/bin:$PATH # export LD_LIBRARY_PATH=/usr/lib64/openmpi/lib:$LD_LIBRARY_PATH conda install -y tensorflow pip install --no-cache-dir Horovod git clone https://github.com/tensorflow/benchmarks /opt/tensorflow-benchmarks #uncomment following for running on TACC #mkdir –p /home1 #mkdir –p /scratch #mkdir –p /work %environment export http_proxy=http://proxy-server-name:port export https_proxy=http://proxy-server-name:port export PATH=/opt/gcc-6.2.0/bin:$PATH export LD_LIBRARY_PATH=/opt/gcc-6.2.0/lib64:/opt/gcc-6.2.0/lib export PATH=/opt/anaconda2/bin:$PATH #openmpi source /etc/profile.d/modules.sh module add mpi/openmpi-x86_64 #Again, in case module throws an error(eg. on TACC), use: # export PATH=/usr/lib64/openmpi/bin:$PATH # export LD_LIBRARY_PATH=/usr/lib64/openmpi/lib:$LD_LIBRARY_PATH %runscript echo "This is a Singularity image containing Intel optimized TensorFlow installation with Horovod (OpenMPI)" echo "Operating System: $(cat /etc/redhat-release)" echo "GCC: $(gcc --version)" echo "TensorFlow: $(pip show tensorflow --disable-pip-version-check | grep "^Version:" | awk '{print $NF}')" echo "Horovod: $(pip show horovod --disable-pip-version-check | grep "^Version:" | awk '{print $NF}')" echo "OpenMPI: $(ompi_info | grep "Open MPI:" | awk '{print $NF}')" echo "TensorFlow Benchmarks: /opt/tensorflow-benchmarks" Script 5: tf-horovod.singularity file contents for the case where TensorFlow is installed from conda. 5.3.3 Recipe file for TensorFlow wheel on local file system Bootstrap: docker From: centos:latest %setup # Adjust the below source path and file name accordingly cp /path/on/local/filesystem/to/tensorflow.whl ${SINGULARITY_ROOTFS}/tensorflow.whl export SINGULARITY_SHELL=/bin/bash %post -c /bin/bash # If your environment requires proxy to reach internet, then export the http, https proxy variables accordingly export http_proxy=http://proxy-server-name:port export https_proxy=http://proxy-server-name:port Version 0.94 Page 25 9/15/2018
27. Best Practices for Scaling Deep Learning Training and Inference with TensorFlow* On Intel® Xeon® yum clean all rm -rf /var/cache/yum yum -y install epel-release yum -y groupinstall "Development Tools" yum -y install wget yum -y install git #installing gcc yum -y install gmp-devel mpfr-devel libmpc-devel glibc-devel.i686 libgcc.i686 gcc-c++ wget https://ftp.gnu.org/gnu/gcc/gcc-6.2.0/gcc-6.2.0.tar.gz tar -xzf gcc-6.2.0.tar.gz mkdir build cd build ../gcc-6.2.0/configure --prefix=/opt/gcc-6.2.0 make -j 20 make install #adding GCC to $PATH export PATH=/opt/gcc-6.2.0/bin:$PATH export LD_LIBRARY_PATH=/opt/gcc-6.2.0/lib64:/opt/gcc-6.2.0/lib:$LD_LIBRARY_PATH yum -y install python-pip python-wheel python-devel yum -y install openmpi openmpi-devel yum -y install environment-modules source /etc/profile.d/modules.sh module add mpi/openmpi-x86_64 #In case module throws an error (eg. on TACC), use: # export PATH=/usr/lib64/openmpi/bin:$PATH # export LD_LIBRARY_PATH=/usr/lib64/openmpi/lib:$LD_LIBRARY_PATH # Replace the tensorflow.whl file in the installation below to the actual file name used in the setup section pip install /tensorflow.whl pip install --no-cache-dir Horovod # Download the TF benchmarks and place them in /opt inside the image git clone https://github.com/tensorflow/benchmarks /opt/tensorflow-benchmarks #For running on TACC: uncomment the following lines to bind these directories # mkdir –p /home1 # mkdir –p /scratch # mkdir –p /work %environment export http_proxy=http://proxy-server-name:port export https_proxy=http://proxy-server-name:port #gcc 6.2.0 export PATH=/opt/gcc-6.2.0/bin:$PATH export LD_LIBRARY_PATH=/opt/gcc-6.2.0/lib64:/opt/gcc-6.2.0/lib:$LD_LIBRARY_PATH #openmpi source /etc/profile.d/modules.sh module add mpi/openmpi-x86_64 #Again, in case module throws an error(eg. on TACC), use: # export PATH=/usr/lib64/openmpi/bin:$PATH # export LD_LIBRARY_PATH=/usr/lib64/openmpi/lib:$LD_LIBRARY_PATH %runscript echo "This is a Singularity image containing Intel optimized TensorFlow installation with Horovod (OpenMPI)" echo "Operating System: $(cat /etc/redhat-release)" echo "GCC: $(gcc --version | grep "(GCC)" | awk '{print}')" Version 0.94 Page 26 9/15/2018
28. Best Practices for Scaling Deep Learning Training and Inference with TensorFlow* On Intel® Xeon® echo "TensorFlow: $(pip show tensorflow --disable-pip-version-check | grep "^Version:" | awk '{print $NF}')" echo "Horovod: $(pip show horovod --disable-pip-version-check | grep "^Version:" | awk '{print $NF}')" echo "OpenMPI: $(ompi_info | grep "Open MPI:" | awk '{print $NF}')" echo "TensorFlow Benchmarks: /opt/tensorflow-benchmarks" Script 6: tf-horovod.singularity file contents for the case where TensorFlow is installed from local file system. Edit highlighted text depending on your environment, paths and TensorFlow wheel. 5.3.4 Singularity run-script #!/bin/bash PATH_TO_SINGULARITY="/path/to/singularity/installation/bin/singularity" PATH_TO_SIMG="/path/to/tf-horovod.simg" SING_EXEC_CMD="${PATH_TO_SINGULARITY} exec --bind /local/path/to/TF_Records: /image/path/to/TF_Records ${PATH_TO_SIMG}" PATH_TO_SIMG_TF_BENCH="/opt/tensorflow-benchmarks/" OMP_NUM_THREADS=<positive_number> HOSTNAMES="hostname1,hostname2,and so on" args=" \ --batch_size=64 \ --model=resnet50 \ --num_intra_threads=$OMP_NUM_THREADS \ --num_inter_threads=2 \ --display_every=5 \ --data_format=NCHW \ --optimizer=momentum \ --device=cpu " HOROVOD_FUSION_THRESHOLD=134217728 mpirun --np 4 \ --map-by ppr:2:socket:pe=${OMP_NUM_THREADS} \ -H ${HOSTNAMES} \ --report-bindings \ --oversubscribe \ --allow-run-as-root \ -x LD_LIBRARY_PATH \ -x HOROVOD_FUSION_THRESHOLD \ -x OMP_NUM_THREADS=${OMP_NUM_THREADS} \ ${SING_EXEC_CMD} \ python ${PATH_TO_SIMG_TF_BENCH}/scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py $args \ --mkl=TRUE \ --variable_update=horovod --horovod_device=cpu \ --local_parameter_device=cpu --kmp_blocktime=1 \ --data_dir=/image/path/to/TF_Records --data_name=imagenet Script 7: Sample run_singularity_multiworker.sh . Edit text highlighted in yellow depending on your environment and number of TF workers per node. Also, edit “args” settings for the TF benchmark topology. Version 0.94 Page 27 9/15/2018
29. Best Practices for Scaling Deep Learning Training and Inference with TensorFlow* On Intel® Xeon® 6. TROUBLESHOOTING 6.1 TensorFlow Import Issues With the most recent pre-built 1.9 wheel, this error might occur on some systems while importing tensorflow: 6.1.1 Importing TensorFlow >>> import tensorflow Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/path/to/virtualenv/virtenv/lib/python2.7/site- packages/tensorflow/__init__.py", line 22, in <module> from tensorflow.python import pywrap_tensorflow # pylint: disable=unused-import File "/path/to/virtualenv/virtenv/lib/python2.7/site- packages/tensorflow/python/__init__.py", line 49, in <module> from tensorflow.python import pywrap_tensorflow File "/path/to/virtualenv/virtenv/lib/python2.7/site- packages/tensorflow/python/pywrap_tensorflow.py", line 74, in <module> raise ImportError(msg) ImportError: Traceback (most recent call last): File "/path/to/virtualenv/virtenv/lib/python2.7/site- packages/tensorflow/python/pywrap_tensorflow.py", line 58, in <module> from tensorflow.python.pywrap_tensorflow_internal import * File "/path/to/virtualenv/virtenv/lib/python2.7/site- packages/tensorflow/python/pywrap_tensorflow_internal.py", line 28, in <module> _pywrap_tensorflow_internal = swig_import_helper() File "/path/to/virtualenv/virtenv/lib/python2.7/site- packages/tensorflow/python/pywrap_tensorflow_internal.py", line 24, in swig_import_helper _mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description) ImportError: /lib64/libm.so.6: version `GLIBC_2.23' not found (required by /path/to/virtualenv/virtenv/lib/python2.7/site- packages/tensorflow/python/_pywrap_tensorflow_internal.so) Failed to load the native TensorFlow runtime. This happens because the wheel requires GLIBC 2.23, but the system has an older version. You can use the following techniques to debug this issue. 6.1.2 Run ldd to find the dynamically linked libraries (virt2.7) [user@linux singularity_testing]$ ldd /path/to/virtualenv/virt2.7/lib/python2.7/site- packages/tensorflow/python/_pywrap_tensorflow_internal.so linux-vdso.so.1 => (0x00007fff4df5b000) libtensorflow_framework.so => /path/to/virtualenv/virt2.7/lib/python2.7/site- packages/tensorflow/python/../libtensorflow_framework.so (0x00007f426cefe000) libiomp5.so => /path/to/virtualenv/virt2.7/lib/python2.7/site- packages/tensorflow/python/../../_solib_k8/_U@mkl_Ulinux_S_S_Cmkl_Ulibs_Ulinux___Uexte rnal_Smkl_Ulinux_Slib/libiomp5.so (0x00007f426cb5a000) libmklml_intel.so => /path/to/virtualenv/virt2.7/lib/python2.7/site- packages/tensorflow/python/../../_solib_k8/_U@mkl_Ulinux_S_S_Cmkl_Ulibs_Ulinux___Uexte rnal_Smkl_Ulinux_Slib/libmklml_intel.so (0x00007f4263a89000) libdl.so.2 => /lib64/libdl.so.2 (0x00007f4263885000) libpthread.so.0 => /lib64/libpthread.so.0 (0x00007f4263669000) libm.so.6 => /lib64/libm.so.6 (0x00007f4263367000) libstdc++.so.6 => /path/to/gcc-7.2.0/lib64/libstdc++.so.6 (0x00007f4262fe6000) libgcc_s.so.1 => /path/to/gcc-7.2.0/lib64/libgcc_s.so.1 (0x00007f4262dcf000) libc.so.6 => /lib64/libc.so.6 (0x00007f4262a02000) /lib64/ld-linux-x86-64.so.2 (0x00007f4273a10000) Version 0.94 Page 28 9/15/2018
30. Best Practices for Scaling Deep Learning Training and Inference with TensorFlow* On Intel® Xeon® The libm.so.6 in /lib64 was not finding `GLIBC_2.23'. 6.1.3 Check by running: (virt2.7) [user@linux singularity_testing]$ strings /lib64/libm.so.6 | grep "GLIBC_" GLIBC_2.2.5 GLIBC_2.4 GLIBC_2.15 GLIBC_PRIVATE GLIBC_2.15 __strtold_nan@@GLIBC_PRIVATE __errno_location@@GLIBC_2.2.5 errno@@GLIBC_PRIVATE qsort@@GLIBC_2.2.5 __strtod_nan@@GLIBC_PRIVATE fputs@@GLIBC_2.2.5 memset@@GLIBC_2.2.5 feupdateenv@@GLIBC_2.2.5 GLIBC_2.4 _rtld_global_ro@@GLIBC_PRIVATE __strtof_nan@@GLIBC_PRIVATE memmove@@GLIBC_2.2.5 fwrite@@GLIBC_2.2.5 __cxa_finalize@@GLIBC_2.2.5 stderr@@GLIBC_2.2.5 GLIBC_2.2.5 Finally, one fix is to build the required version of GLIBC in a user-specified path, and then copying the libm.so.6 to a path that is imported in LD_LIBRARY_PATH. mkdir ~/glibc cd ~/glibc wget http://ftp.gnu.org/gnu/glibc/glibc-2.23.tar.gz tar zxvf glibc-2.23.tar.gz cd glibc-2.23 mkdir build cd build ../configure --prefix=/opt/glibc-2.23 make -j4 sudo make install cp /opt/glibc-2.23/lib/libm.so.6 </some/path>/lib export LD_LIBRARY_PATH=</some/path>/lib Please make sure that you do not replace the system’s GLIBC. Adding /opt/glibc-2.23/lib to LD_LIBRARY_PATH might break other things like ls. Version 0.94 Page 29 9/15/2018
31. Best Practices for Scaling Deep Learning Training and Inference with TensorFlow* On Intel® Xeon® 6.1.4 Another Common Error when Importing TensorFlow >>> import tensorflow Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/path/to/virtualenv/test/lib/python2.7/site-packages/tensorflow/__init__.py", line 22, in <module> from tensorflow.python import pywrap_tensorflow # pylint: disable=unused-import File "/path/to/virtualenv/test/lib/python2.7/site- packages/tensorflow/python/__init__.py", line 49, in <module> from tensorflow.python import pywrap_tensorflow File "/path/to/virtualenv/test/lib/python2.7/site- packages/tensorflow/python/pywrap_tensorflow.py", line 74, in <module> raise ImportError(msg) ImportError: Traceback (most recent call last): File "/path/to/virtualenv/test/lib/python2.7/site- packages/tensorflow/python/pywrap_tensorflow.py", line 58, in <module> from tensorflow.python.pywrap_tensorflow_internal import * File "/path/to/virtualenv/test/lib/python2.7/site- packages/tensorflow/python/pywrap_tensorflow_internal.py", line 28, in <module> _pywrap_tensorflow_internal = swig_import_helper() File "/path/to/virtualenv/test/lib/python2.7/site- packages/tensorflow/python/pywrap_tensorflow_internal.py", line 24, in swig_import_helper _mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description) ImportError: /lib64/libstdc++.so.6: version `CXXABI_1.3.8' not found (required by /path/to/virtualenv/test/lib/python2.7/site- packages/tensorflow/python/_pywrap_tensorflow_internal.so) Failed to load the native TensorFlow runtime. This happens if you are using an older version of GCC. To fix this, make sure the correct version of gcc (6.2 or higher) is in PATH and LD_LIBRARY_PATH. 6.1.5 Verify that TensorFlow is Using right the version of gcc (test) [user@linux OOCpackage_testing]$ ldd /path/to/virtualenv/test/lib/python2.7/site- packages/tensorflow/python/_pywrap_tensorflow_internal.so /path/to/virtualenv/test/lib/python2.7/site- packages/tensorflow/python/_pywrap_tensorflow_internal.so: /lib64/libstdc++.so.6: version `CXXABI_1.3.8' not found (required by /path/to/virtualenv/test/lib/python2.7/site- packages/tensorflow/python/_pywrap_tensorflow_internal.so) /path/to/virtualenv/test/lib/python2.7/site- packages/tensorflow/python/_pywrap_tensorflow_internal.so: /lib64/libstdc++.so.6: version `GLIBCXX_3.4.21' not found (required by /path/to/virtualenv/test/lib/python2.7/site- packages/tensorflow/python/_pywrap_tensorflow_internal.so) /path/to/virtualenv/test/lib/python2.7/site- packages/tensorflow/python/_pywrap_tensorflow_internal.so: /lib64/libstdc++.so.6: version `GLIBCXX_3.4.20' not found (required by /path/to/virtualenv/test/lib/python2.7/site- packages/tensorflow/python/_pywrap_tensorflow_internal.so) /path/to/virtualenv/test/lib/python2.7/site- packages/tensorflow/python/_pywrap_tensorflow_internal.so: /lib64/libm.so.6: version `GLIBC_2.23' not found (required by /path/to/virtualenv/test/lib/python2.7/site- packages/tensorflow/python/_pywrap_tensorflow_internal.so) /path/to/virtualenv/test/lib/python2.7/site- packages/tensorflow/python/_pywrap_tensorflow_internal.so: /lib64/libstdc++.so.6: version `GLIBCXX_3.4.20' not found (required by /path/to/virtualenv/test/lib/python2.7/site- packages/tensorflow/python/../libtensorflow_framework.so) Version 0.94 Page 30 9/15/2018
32. Best Practices for Scaling Deep Learning Training and Inference with TensorFlow* On Intel® Xeon® /path/to/virtualenv/test/lib/python2.7/site- packages/tensorflow/python/_pywrap_tensorflow_internal.so: /lib64/libstdc++.so.6: version `GLIBCXX_3.4.21' not found (required by /path/to/virtualenv/test/lib/python2.7/site- packages/tensorflow/python/../libtensorflow_framework.so) /path/to/virtualenv/test/lib/python2.7/site- packages/tensorflow/python/_pywrap_tensorflow_internal.so: /lib64/libstdc++.so.6: version `CXXABI_1.3.8' not found (required by /path/to/virtualenv/test/lib/python2.7/site- packages/tensorflow/python/../libtensorflow_framework.so) linux-vdso.so.1 => (0x00007ffc2c326000) libtensorflow_framework.so => /path/to/virtualenv/test/lib/python2.7/site- packages/tensorflow/python/../libtensorflow_framework.so (0x00007fec5a4dd000) libiomp5.so => /path/to/virtualenv/test/lib/python2.7/site- packages/tensorflow/python/../../_solib_k8/_U@mkl_Ulinux_S_S_Cmkl_Ulibs_Ulinux___Uexte rnal_Smkl_Ulinux_Slib/libiomp5.so (0x00007fec5a139000) libmklml_intel.so => /path/to/virtualenv/test/lib/python2.7/site- packages/tensorflow/python/../../_solib_k8/_U@mkl_Ulinux_S_S_Cmkl_Ulibs_Ulinux___Uexte rnal_Smkl_Ulinux_Slib/libmklml_intel.so (0x00007fec51068000) libdl.so.2 => /lib64/libdl.so.2 (0x00007fec50e64000) libpthread.so.0 => /lib64/libpthread.so.0 (0x00007fec50c48000) libm.so.6 => /lib64/libm.so.6 (0x00007fec50946000) librt.so.1 => /lib64/librt.so.1 (0x00007fec5073e000) libstdc++.so.6 => /lib64/libstdc++.so.6 (0x00007fec50437000) libgcc_s.so.1 => /lib64/libgcc_s.so.1 (0x00007fec50221000) libc.so.6 => /lib64/libc.so.6 (0x00007fec4fe54000) /lib64/ld-linux-x86-64.so.2 (0x00007fec615b2000) 6.1.6 Run ldd again after adding the correct version of gcc (test) [user@linux OOCpackage_testing]$ ldd /path/to/virtualenv/test/lib/python2.7/site- packages/tensorflow/python/_pywrap_tensorflow_internal.so linux-vdso.so.1 => (0x00007ffe334f6000) libtensorflow_framework.so => /path/to/virtualenv/test/lib/python2.7/site- packages/tensorflow/python/../libtensorflow_framework.so (0x00007efff9f26000) libiomp5.so => /path/to/virtualenv/test/lib/python2.7/site- packages/tensorflow/python/../../_solib_k8/_U@mkl_Ulinux_S_S_Cmkl_Ulibs_Ulinux___Uexte rnal_Smkl_Ulinux_Slib/libiomp5.so (0x00007efff9b82000) libmklml_intel.so => /path/to/virtualenv/test/lib/python2.7/site- packages/tensorflow/python/../../_solib_k8/_U@mkl_Ulinux_S_S_Cmkl_Ulibs_Ulinux___Uexte rnal_Smkl_Ulinux_Slib/libmklml_intel.so (0x00007efff0ab1000) libdl.so.2 => /lib64/libdl.so.2 (0x00007efff08ad000) libpthread.so.0 => /lib64/libpthread.so.0 (0x00007efff0691000) libm.so.6 => /lib64/libm.so.6 (0x00007efff038e000) librt.so.1 => /lib64/librt.so.1 (0x00007efff0186000) libstdc++.so.6 => /path/to/gcc-7.2.0/lib64/libstdc++.so.6 (0x00007effefe05000) libgcc_s.so.1 => /path/to/gcc-7.2.0/lib64/libgcc_s.so.1 (0x00007effefbee000) libc.so.6 => /lib64/libc.so.6 (0x00007effef821000) /lib64/ld-linux-x86-64.so.2 (0x00007f0000ffb000) Version 0.94 Page 31 9/15/2018
33. Best Practices for Scaling Deep Learning Training and Inference with TensorFlow* On Intel® Xeon® 6.2 TensorFlow Build Issues At the time of writing this document, TensorFlow fails to build with the latest Bazel version 0.12.0. The error is shown below: [user@linux tensorflow]$ bazel build --config mkl --copt="-mavx2" --copt="- O3" --copt="-mfma" --copt="-march=broadwell" -s -c opt //tensorflow/tools/pip_package:build_pip_package WARNING: /home/user/.cache/bazel/_bazel_user/8aaf3223e362cc8d0a1f01ee89fea818/external /protobuf_archive/WORKSPACE:1: Workspace name in /home/user/.cache/bazel/_bazel_user/8aaf3223e362cc8d0a1f01ee89fea818/external /protobuf_archive/WORKSPACE (@com_google_protobuf) does not match the name given in the repository's definition (@protobuf_archive); this will cause a build error in future versions WARNING: /home/user/.cache/bazel/_bazel_user/8aaf3223e362cc8d0a1f01ee89fea818/external /grpc/WORKSPACE:1: Workspace name in /home/user/.cache/bazel/_bazel_user/8aaf3223e362cc8d0a1f01ee89fea818/external /grpc/WORKSPACE (@com_github_grpc_grpc) does not match the name given in the repository's definition (@grpc); this will cause a build error in future versions WARNING: /home/user/tf_test_new/tensorflow/third_party/mkl/BUILD:20:12: in srcs attribute of cc_library rule //third_party/mkl:intel_binary_blob: please do not import '@mkl//:lib/libmklml_intel.so' directly. You should either move the file to this package or depend on an appropriate rule there WARNING: /home/user/tf_test_new/tensorflow/third_party/mkl/BUILD:20:12: in srcs attribute of cc_library rule //third_party/mkl:intel_binary_blob: please do not import '@mkl//:lib/libiomp5.so' directly. You should either move the file to this package or depend on an appropriate rule there ERROR: /home/user/.cache/bazel/_bazel_user/8aaf3223e362cc8d0a1f01ee89fea818/external /jpeg/BUILD:126:12: Illegal ambiguous match on configurable attribute "deps" in @jpeg//:jpeg: @jpeg//:k8 @jpeg//:armeabi-v7a Multiple matches are not allowed unless one is unambiguously more specialized. ERROR: Analysis of target '//tensorflow/tools/pip_package:build_pip_package' failed; build aborted: /home/user/.cache/bazel/_bazel_user/8aaf3223e362cc8d0a1f01ee89fea818/external /jpeg/BUILD:126:12: Illegal ambiguous match on configurable attribute "deps" in @jpeg//:jpeg: @jpeg//:k8 @jpeg//:armeabi-v7a Multiple matches are not allowed unless one is unambiguously more specialized. INFO: Elapsed time: 7.813s FAILED: Build did NOT complete successfully (135 packages loaded) currently loading: tensorflow/core/kernels The workaround is to downgrade to the previous Bazel version 0.11.1 Version 0.94 Page 32 9/15/2018
34. Best Practices for Scaling Deep Learning Training and Inference with TensorFlow* On Intel® Xeon® 6.3 Horovod Install Issues On trying to import Horovod, if there are errors such as this: >>> import horovod.tensorflow Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/user/tf_test_new/virtenv/lib/python2.7/site- packages/horovod/tensorflow/__init__.py", line 41, in <module> from horovod.tensorflow.mpi_ops import allgather File "/home/user/tf_test_new/virtenv/lib/python2.7/site- packages/horovod/tensorflow/mpi_ops.py", line 56, in <module> ['HorovodAllgather', 'HorovodAllreduce']) File "/home/user/tf_test_new/virtenv/lib/python2.7/site- packages/horovod/tensorflow/mpi_ops.py", line 43, in _load_library library = load_library.load_op_library(filename) File "/home/user/tf_test_new/virtenv/lib/python2.7/site- packages/tensorflow/python/framework/load_library.py", line 58, in load_op_library lib_handle = py_tf.TF_LoadLibrary(library_filename, status) File "/home/user/tf_test_new/virtenv/lib/python2.7/site- packages/tensorflow/python/framework/errors_impl.py", line 516, in __exit__ c_api.TF_GetCode(self.status.status)) tensorflow.python.framework.errors_impl.NotFoundError: /home/user/tf_test_new/virtenv/lib/python2.7/site- packages/horovod/tensorflow/mpi_lib.so: undefined symbol: _ZNK10tensorflow8OpKernel4nameEv Ensure that the same GCC version that was using to build TensorFlow is in PATH when installing Horovod. If different versions were used, especially GCC versions older than 5.1, then object files get compiled with for different versions of the ABI (_GLIBCXX_USE_CXX11_ABI), resulting in this error at link time. To fix this, uninstall Horovod, fix PATH and LD_LIBRARY_PATH to point to the correct GCC, and then reinstall Horovod. 6.4 Verify Intel® Omni-Path Architecture (OPA) The official documentation contains in-depth information on setup and configuration of Intel® OPA: https://www.intel.com/content/www/us/en/support/articles/000016242/network-and-i-o/fabric-products.html 6.4.1 Verify that OPA is Up and Running opaconfig -V 10.3.1.0.22 6.4.2 Verify Install (Example of a good install) ibstat CA 'hfi1_0' CA type: Number of ports: 1 Firmware version: Hardware version: 11 Node GUID: 0x00117501017a04c9 System image GUID: 0x00117501017a04c9 Port 1: State: Active Physical state: LinkUp Rate: 100 Version 0.94 Page 33 9/15/2018
35. Best Practices for Scaling Deep Learning Training and Inference with TensorFlow* On Intel® Xeon® Base lid: 19 LMC: 0 SM lid: 1 Capability mask: 0x00410020 Port GUID: 0x00117501017a04c9 Link layer: InfiniBand opainfo hfi1_0:1 PortGID:0xfe80000000000000:001175010174447d PortState: Active LinkSpeed Act: 25Gb En: 25Gb LinkWidth Act: 4 En: 4 LinkWidthDnGrd ActTx: 4 Rx: 4 En: 3,4 LCRC Act: 14-bit En: 14-bit,16-bit,48-bit Mgmt: True LID: 0x00000031-0x00000031 SM LID: 0x00000001 SL: 0 QSFP: PassiveCu, 3m Hitachi Metals P/N IQSFP26C-30 Rev 03 Xmit Data: 10922365 MB Pkts: 1929517624 Recv Data: 10893103 MB Pkts: 1809969601 Link Quality: 5 (Excellent) 6.4.3 Verify OPA Fabric Performance We recommend sanity checking the OPA network connectivity by using a test benchmark. If the Intel® Omni-Path Fabric Suite FastFabric Toolset is installed, a number of such test suites are automatically included in the installation. See section 8 of the Intel® OPA™ FastFabric Toolset documentation here: https://www.intel.com/content/dam/support/us/en/documents/network-and-i-o/fabric- products/Intel_OP_FabricSuite_FastFabric_UG_H76469_v8_0.pdf If not, the link can be checked manually by running benchmarks such as the OSU benchmark, which are easily obtainable on the official page here: http://mvapich.cse.ohio-state.edu/benchmarks/ 6.4.4 OPA Install Issues Some things to check if the hfi1 module does not load automatically on reboot: You may have to load the driver manually: sudo service rdma start sudo modprobe hfi1 service irqbalance restart lsmod | grep hfi1 hfi1 697628 1 rdmavt 63294 1 hfi1 ib_core 210381 13 hfi1,rdma_cm,ib_cm,iw_cm,rpcrdma,ib_ucm,rdmavt,ib_iser,ib_umad,ib_uverbs,rdma _ucm,ib_ipoib,ib_isert i2c_algo_bit 13413 3 igb,hfi1,mgag200 Version 0.94 Page 34 9/15/2018
36. Best Practices for Scaling Deep Learning Training and Inference with TensorFlow* On Intel® Xeon® i2c_core 40756 drm,igb,hfi1,i2c_i801,drm_kms_helper,mgag200,i2c_algo_bit 7 Check if device is present and recognized in the PCIe tree: [user@linux nompi]$ ls –l /sys/class/infiniband lrwxrwxrwx 1 root root 0 Oct 10 12:14 hfi1_0 -> ../../devices/pci0000:00/0000:00:02.0/0000:02:00.0/infiniband/hfi1_0 [user@linux nompi]$ ls -l /dev/hfi1* crw-rw-rw- 1 root root 245, 0 Apr 12 14:33 /dev/hfi1_0 crw------- 1 root root 245, 128 Apr 12 14:33 /dev/hfi1_diagpkt crw------- 1 root root 245, 200 Apr 12 14:33 /dev/hfi1_diagpkt0 [bduser@node27 ~]$ lspci | grep -i hfi 03:00.0 Fabric controller: Intel Corporation Omni-Path HFI Silicon 100 Series [discrete] (rev 11) Look at dmesg. Following shows driver loaded correctly: [ [ [ [ [ [ 22.987380] 22.987398] 22.987409] 22.988637] 22.988651] 22.988715] hfi1 hfi1 hfi1 hfi1 hfi1 hfi1 0000:03:00.0: 0000:03:00.0: 0000:03:00.0: 0000:03:00.0: 0000:03:00.0: 0000:03:00.0: hfi1_0: hfi1_0: hfi1_0: hfi1_0: hfi1_0: hfi1_0: set_link_state: current INIT, new ARMED logical state changed to PORT_ARMED (0x3) send_idle_message: sending idle message 0x103 set_link_state: current ARMED, new ACTIVE logical state changed to PORT_ACTIVE (0x4) send_idle_message: sending idle message 0x203 Additional driver parameters are listed in the performance tuning guide: https://www.intel.com/content/www/us/en/support/articles/000016242/network-and-i-o/fabric-products.html Current version (subject to update): https://www.intel.com/content/dam/support/us/en/documents/network-and-i-o/fabric- products/Intel_OP_Performance_Tuning_UG_H93143_v11_0.pdf To test basic functionality, run a Verbs or IPoFabric benchmark. See section 7 of performance tuning guide for complete details. Below is a snippet showing how to run ib_write_bw from the perftest benchmark to test for Verbs performance. To unload the driver manually: sudo rmmod hfi1 sudo rmmod rdmavt Version 0.94 Page 35 9/15/2018

Home - Wiki
Copyright © 2011-2024 iteam. Current version is 2.138.0. UTC+08:00, 2024-12-22 10:30
浙ICP备14020137号-1 $Map of visitor$