一种基于 LSTM 的音频质量检测方案
摘要
随着网络技术的发展,各种各样的音视频产品应接不暇,应用场景也越来越多样,使人们的生活更加丰富多彩。与此同时,人们对音频的质量也有越来越高的要求,而如何准确评估音频质量好坏成为了相关行业的研究热点。音频质量评估方法主要分为主观和客观两类。主观方法是通过人根据听觉感受来打分。客观的方法是通过算法来计算评估的,主要分为有参考和无参考两种。有参考的方法在评估音频时需要一个对应的高质量无损音频作为参考,代表算法如PESQ(Perceptual evaluation of speech quality);而无参考的方法直接对音频进行打分,代表算法如P.563。
目前大多数客观的音频质量评估方法属于无参考这一类,这类方法往往更准确。而在现实生活中,人类在没有参考的情况下能直接分辨出音频质量的好坏,这意味着存在一种评价机制来直接对音频质量进行评估而不需要参考。设想一下,如果我们通过神经网络模型来训练学习这种机制,那么这个模型不就能准确评估任何语音的质量吗?基于这样的思路,我们探索和实践了基于LSTM深度学习模型的音频质量检测方案。
欢迎在评论区写下你对这篇文章的看法。