Continuous Integration and Deployment for Machine Learning Online Serving and Models

摘要

At Uber, we have witnessed a significant increase in machine learning adoption across various organizations and use-cases over the last few years. Our machine learning models are empowering a better customer experience, helping prevent safety incidents, and ensuring market efficiency, all in real time. The figure above is a high level view of CI/CD for models and service binary.

One thing to note is we have continuous integration (CI)/continuous deployment (CD) for models and services, as shown above in Figure 1. We arrived at this solution after several iterations to address some of MLOps challenges, as the number of models trained and deployed grew rapidly. The first challenge was to support a large volume of model deployments on a daily basis, while keeping the Real-time Prediction Service highly available. We will discuss our solution in the Model Deployment section.

欢迎在评论区写下你对这篇文章的看法。

评论

Home - Wiki
Copyright © 2011-2024 iteam. Current version is 2.139.0. UTC+08:00, 2024-12-23 00:01
浙ICP备14020137号-1 $Map of visitor$