Going Infinite, handling 1M websockets connections in Go

如果无法正常显示,请先停止浏览器的去广告插件。
分享至:
1. Going Infinite, handling 1M websockets connections in Go Eran Yanay, Twistlock
2. The goal Developing high-load Go server that is able to manage millions of concurrent connections ● ● ● ● How to write a webserver in Go? How to handle persistent connections? What limitations arise in scale? How to handle persistent connections efficiently? ○ OS limitations ○ Hardware limitations
3. How a Go web server works? package main import ( "io" "net/http" ) func main() { http.HandleFunc("/", hello) http.ListenAndServe (":8000", nil) } func hello(w http.ResponseWriter, r *http.Request) { io.WriteString(w, "Hello Gophercon!" ) }
4. How a Go web server works? package main import ( "io" "net/http" ) func main() { http.HandleFunc("/", hello) http.ListenAndServe (":8000", nil) } func hello(w http.ResponseWriter, r *http.Request) { io.WriteString(w, "Hello Gophercon!" ) }
5. How a Go web server works? // Serve accepts incoming connections on the Listener l, creating a // new service goroutine for each. The service goroutines read requests and // then call srv.Handler to reply to them. func (srv *Server) Serve(l net.Listener) error { // ... for { rw, e := l.Accept() // ... c := srv.newConn(rw) c.setState(c.rwc, StateNew) // before Serve can return go c.serve(ctx) } }
6. How a Go web server works? // Serve accepts incoming connections on the Listener l, creating a // new service goroutine for each. The service goroutines read requests and // then call srv.Handler to reply to them. func (srv *Server) Serve(l net.Listener) error { // ... for { rw, e := l.Accept() // ... c := srv.newConn(rw) func hello(w http.ResponseWriter, r *http.Request) { ) c.setState(c.rwc, StateNew) io.WriteString(w, "Hello Gophercon!" // before Serve can return } go c.serve(ctx) } }
7. The need for persistent connections ● ● ● ● ● ● Message queues Chat applications Notifications Social feeds Collaborative editing Location updates
8. What is a websocket? WebSockets provide a way to maintain a full-duplex persistent connection between a client and server that both parties can start sending data at any time, with low overhead and latency GET ws://websocket.example.com/ HTTP/1.1 Connection: Upgrade Host: websocket.example.com Upgrade: websocket Client Server HTTP/1.1 101 WebSocket Protocol Handshake Connection: Upgrade Upgrade: WebSocket
9. Websockets in Go
10. Websockets in Go func ws(w http.ResponseWriter, r *http.Request) { func main() { // Upgrade connection http.HandleFunc("/", ws) upgrader := websocket.Upgrader{} http.ListenAndServe(":8000", nil) conn, err := upgrader.Upgrade(w, r, nil) if err != nil { return } for { _, msg, err := conn.ReadMessage() if err != nil { log.Printf("Failed to read message %v", err) conn.Close() return } log.Println(string(msg)) } } }
11. Demo!
12. Demo! - Cont’d
13. Too many open files ● Every socket is represented by a file descriptor ● The OS needs memory to manage each open file ● Memory is a limited resource ● Maximum number of open files can be changed via ulimits
14. Resources limit Ulimit provides control over the resources available to processes
15. Resources limit Ulimit provides control over the resources available to processes ● ● ● ● ● The kernel enforces the soft limit for the corresponding resource The hard limit acts as a ceiling for the soft limit Unprivileged process can only raise up to the hard limit Privileged process can make any arbitrary change RLIMIT_NOFILE is the resource enforcing max number of open files
16. Resources limit in Go func SetUlimit() error { var rLimit syscall.Rlimit if err := syscall.Getrlimit(syscall.RLIMIT_NOFILE, &rLimit); err !=nil { return err } rLimit.Cur = rLimit.Max return syscall.Setrlimit(syscall.RLIMIT_NOFILE, &rLimit) }
17. Demo! (#2)
18. Memory consumption
19. pprof Package pprof serves via its HTTP server runtime profiling data in the format expected by the pprof visualization tool. import _ "net/http/pprof" go func() { if err := http.ListenAndServe ("localhost:6060" nil); err != nil { , log.Fatalf("Pprof failed: %v" err) , } }() ● Analyze heap memory: go ● Analyze goroutines: go tool pprof http://localhost:6060/debug/pprof/heap tool pprof http://localhost:6060/debug/pprof/goroutine
20. pprof - Demo!
21. Memory consumption Each connection in the naive solution consumes ~20KB:
22. Memory consumption Each connection in the naive solution consumes ~20KB: func ws(w http.ResponseWriter, r *http.Request) { // ... }
23. Memory consumption Each connection in the naive solution consumes ~20KB: func ws(w http.ResponseWriter, r *http.Request) { // ... } upgrader := websocket.Upgrader{} conn, err := upgrader.Upgrade(w, r, nil) if err != nil { return }
24. Memory consumption Each connection in the naive solution consumes ~20KB: func ws(w http.ResponseWriter, r *http.Request) { // ... } upgrader := websocket.Upgrader{} conn, err := upgrader.Upgrade(w, r, nil) if err != nil { return } Serving a million concurrent connections would consume over 20GB of RAM!
25. Optimizations If we could… ● ● ● Optimize goroutines Optimize net/http objects allocations Reuse allocated buffers across websockets read/write
26. Optimization #1: goroutines Knowing when data exists on the wire would allow us to reuse goroutines and reduce memory footprint ● ● ● goroutines select / poll epoll
27. Optimization #1: goroutines Knowing when data exists on the wire would allow us to reuse goroutines and reduce memory footprint func ws(w http.ResponseWriter, r *http.Request) { ● goroutines ● ● // Upgrade connection … select / poll epoll for { _, msg, err := conn.ReadMessage() if err != nil { log. Printf("Failed to read message %v" err) , conn.Close() return } log.Println(string(msg)) } }
28. Optimization #1: goroutines Knowing when data exists on the wire would allow us to reuse goroutines and reduce memory footprint t := &syscall.Timeval{ /* timeout for the call */ } ● goroutines if _, err := syscall.Select(maxFD+1, fds, nil, nil, t); err != nil { return nil, err ● select / poll ● epoll } for _, fd := range fds { if fdIsSet(fdset, fd) { // Consume data } }
29. Optimization #1: goroutines Knowing when data exists on the wire would allow us to reuse goroutines and reduce memory footprint epfd, _ := unix.EpollCreate1(0) ● ● goroutines select / poll ● epoll _ := unix.EpollCtl(epfd, syscall.EPOLL_CTL_ADD, fd, &unix.EpollEvent{Events: unix.POLLIN | unix.POLLHUP, Fd: fd}) events := make([]unix.EpollEvent, 100) n, _ := unix.EpollWait(e.fd, events, 100) for i := 0; i < n; i++ { // Consume data from connection who's fd is events[i].Fd }
30. Epoll - Demo! fd, err := unix.EpollCreate1(0) if err != nil { return nil, err } fd := websocketFD(conn) err := unix.EpollCtl(e.fd, syscall.EPOLL_CTL_ADD, fd, &unix.EpollEvent{Events: unix.POLLIN | unix.POLLHUP, Fd: int32(fd)}) if err != nil { return err }
31. Epoll - Results We managed to reduce the memory consumption by ~30% But..is it enough?
32. Optimization #2: buffers allocations gorilla/websocket keeps a reference to the underlying buffers given by Hijack() var br *bufio.Reader if u.ReadBufferSize == 0 && bufioReaderSize(netConn, brw.Reader) > 256 { // Reuse hijacked buffered reader as connection reader. br = brw.Reader } buf := bufioWriterBuffer(netConn, brw.Writer) var writeBuf []byte if u.WriteBufferPool == nil && u.WriteBufferSize == 0 && len(buf) >= maxFrameHeaderSize+256 { // Reuse hijacked write buffer as connection buffer. writeBuf = buf } c := newConn(netConn, true, u.ReadBufferSize, u.WriteBufferSize, u.WriteBufferPool, br, writeBuf)
33. Optimization #2: buffers allocations github.com/gobwas/ws - alternative websockets library for Go ● ● ● No intermediate allocations during I/O Low-level API which allows building logic of packet handling and buffers Zero-copy upgrades import "github.com/gobwas/ws" for { // Fetch ready connections with epoll logic func wsHandler(w http.ResponseWriter, r *http.Request) { msg, _, err := wsutil.ReadClientData(conn) conn, _, _, err := ws.UpgradeHTTP(r, w) if err == nil { if err != nil { log.Printf("msg: %s", string(msg)) return } else { } // Close connection // Add to epoll } } }
34. gobwas/ws - Demo!
35. Buffer allocations - Results We managed to reduce the memory usage by 97% Serving over a million connections is now reduced from ~20GB to ~600MB
36. Recap.. Premature optimization is the root of all evil, but if we must: ● Ulimit: Increase the cap of NOFILE resource ● Epoll (Async I/O): Reduce the high load of goroutines ● Gobwas - More performant ws library to reduce buffer allocations ● Conntrack table - Increase the cap of total concurrent connections in the OS
37. Thank you! Code examples are available at https://github.com/eranyanay/1m-go-websockets Questions?

首页 - Wiki
Copyright © 2011-2024 iteam. Current version is 2.137.1. UTC+08:00, 2024-11-22 12:20
浙ICP备14020137号-1 $访客地图$