智能数据洞察:大模型驱动的可视化与可视分析
如果无法正常显示,请先停止浏览器的去广告插件。
1. 人智融合数据洞察:大模型驱动的智能
可视分析与故事叙述
复旦大学 大数据学院
陈思明 青年研究员,博士生导师
2025年11月
2. 大数据可视化与可视分析 - 复旦大学大数据学院,陈思明
本科:复旦大学计算机学院
博士:北京大学智能科学与技术
博士后:德国波恩大学
研究科学家:德国Fraunhofer IAIS
青年研究员/博士生导师: 复旦大学大数据学院
扬帆计划获得者、上海市高层次引进人才。发表论文100余篇,在
IEEE Visualization, IEEE TVCG, ACM CHI等重要国际顶级可视化会议以
及期刊上发表40余篇文章(CCF A)。被评为AI2000可视化领域十年
间最有影响力学者提名奖(全球100)。担任3个期刊(2个SCI期刊)
的副主编与编委、多个国际会议的组织委员会和程序委员会成员,
包括IEEE PacificVis论文(短文)主席,ChinaVis论文主席、数据分析
挑战赛主席。他的工作曾获得多次IEEE VAST Challenge数据挑战赛一
等奖,以及多个会议最佳论文/海报(提名)奖。
3. 人智融合数据洞察
大模型驱动智能可视分析数据洞察的高效信息传递多模态的创意信息增强
复杂决策与交互分析文本+数据:构建数据故事视频视频+可视化:融合真实与虚拟
人智协同的深度洞察挖掘可视化+数据:智能数据总结3D特效场景交互式创作
AR+VIS探索
4. 4
!"#$
1. 可视分析系统制作费时费力
-- 至少需要200人时。
2. 只支持固定数据的分析
-- 无法响应用户实时的需求。
解决方案:自动化生成可视分析大屏来
解决用户的数据分析需求。
traditional visual analytics system[1]
2
[1] T. Qiu et al., "FishEye Watcher: A Visual Analytics System for Knowledge Graph Bias Detection - IEEE VAST Challenge 2024 MC1 Honorable Mention for Effective Use of Coordinated Views to
Interrogate Bias," 2024 IEEE Visual Analytics Science and Technology VAST Challenge, St. Pete Beach, FL, USA, 2024, pp. 13-14, doi: 10.1109
FDUVIS
4
5. 5
%&
} 挑战
} 1. 缺少可视分析知识
} 2. 缺少联系与交互
• 动机:
通过人机协作方式,自动化的生成拥
有可视化知识的、可交互的关联视
图。
5
FDUVIS
5
6. 6
SmartMLVs '(
7
FDUVIS
6
7. 7
)*+,
FDUVIS
7
1
4
8. 8
FDUVIS
8
9. 1 | 研究背景和相关工作
-./01234)56789:;<=>?@ABC
LLM-Agent
assistantce
分析人员可视分析系统
C1. 需要根据分析目标分解任务C1. 系统中往往缺乏探索中的指导
C2. 随着探索的进行,分析需求灵活多变C2. 系统是预设的,非自适应于任务
C3. 缺乏可视分析的实现技能C3. 要求开发人员编写代码
FDUVIS
9
10. 2 | 研究框架和内容
DE'(
!"#$%&'()*+,-./0123456789
• 基础:分析目标、数据
• 经过:
• 任务规划(推荐与分解)
• 任务执行(代码生成)
• 结果:洞察
• 合作模式:模型负责规划与执行,
人负责监督和完善
FDUVIS
10
11. 2 | 研究框架和内容
DE'(
!"#$%&'():;23<1=>?@1*2,-14567
1. 任务推荐:把目标转换成可执行的任务
2. 任务执行:生成解决任务所需的可视化
和数据建模的代码,由建模结果或者人
的探索获得洞察。单个可视化可合并成
多个可视化组成的系统。相应的,洞察
也可自由合并进行总结。
3. 任务分解:评估任务执行结果,若解决
不充分则进一步分解成子任务。
FDUVIS
11
12. 2 | 研究框架和内容
研究框架
任务的规划与执行基于任务流:task flow
任务(节点)
任务推荐(边)
任务分解(边)
任务推荐(初始推荐和有历史记录推荐)
初始推荐
表示新提出的任务
FDUVIS
已有分析结果后推荐新任务
任务分解(并行/串行)
and(并行)
down(串行)
12
13. 2 | 研究框架和内容
LightVA
=>A5BCDEFG5B
用于选择要合并的可视化
查看分析进度
回顾分解过程
颜色表示已探索的数据空间
FDUVIS
13
14. 2 | 研究框架和内容
使用场景:社交媒体事件分析
FDUVIS
14
15. ProactiveVA: 主动式UI智能体驱动的可视分析
User
VA
system
UI Agent
Proac&veVA: Proac&ve Visual Analy&cs with LLM-based UI Agent
FDUVIS
15
16. ProactiveVA: 主动式UI智能体驱动的可视分析
Visual Analytics Interface
LightVA
自动化生成
ProactiveVA
数据
算法
感知
可视化
交互
主动式感知
洞察
可视分析的愿景和目标是实现人与ai的智能协同分析和理解数据。
FDUVIS
16
17. 三种可视分析的范式比较
传统可视分析
FDUVIS
响应式可视分析
主动式可视分析
17
18. 主动式可视分析研究挑战
AI Agent
现有工作
时间和解决方案依赖于预定义的规则
FDUVIS
Proactively assist
User
Timing 时机
When to helpC1
How to helpC2 Solution 方法
我们的工作
自主决定何时以及如何协助
18
19. ProactiveVA的工作流程:“感知-推理-行动”
20. ProactiveVA的工作流程:“感知-推理-行动”
Visual analytics interface
操作系统界面
交互来发现洞察
观察用户的交互行为、理解意图
FDUVIS
20
21. 主动式UI智能体辅助的可视分析系统界面
Chat View
Notes
View
VA Interface View
22. Proactive UI Agent-assisted VA Interface
智能体操作系统并高亮发现的数据洞察
Chat View
VA Interface View
Notes View
用户操作界面
智能体解释操作过程
用户提交笔记
智能体检查用
户的笔记
23. ProactiveVA的两个用例
🏆 2021 IEEE 可视分析挑战赛的获奖作品
Data: 社交媒体数据
Task: 识别事件并评估阿比拉市的风险
📈 一个经典的销售和利润分析表仪
表板
Data: 销售数据
Task: 分析销售和利润
24. 系统上手过程的辅助 - demo
25. 数据探索过程的辅助 – vast challenge - demo
26. 数据探索过程的辅助 – tableau sales dashboard -demo
27. 人智融合数据洞察
大模型驱动智能可视分析数据洞察的高效信息传递多模态的创意信息增强
复杂决策与交互分析文本+数据:构建数据故事视频视频+可视化:融合真实与虚拟
人智协同的深度洞察挖掘可视化+数据:智能数据总结3D特效场景交互式创作
AR+VIS探索
FDUVIS
27
28. Narrative Player:让数据叙述增加动态可
视化效果
Narrative Player:
Reviving Data Narratives with Visuals
FDUVIS
28
29. 数据文档
FDUVIS
29
30. 数据视频
FDUVIS
30
31. 数据叙事文本
1 Nestled in the heart of Guangdong, Zhaoqing’s climate tells a story as rich as its heritage. 2 Did you know, 3
the hottest months are from May to August? 4 It’s a symphony of heat, 5 where daily mean temperatures often
flirt with the mercury‘s upper 30℃. But the city doesn’t just tip its hat to the sun. 6 Rainfall plays its part, 7
especially in May and June, 8 where it reaches its crescendo with over 250mm, 9 making it a weather sonata of
heat and rain. But like every masterpiece, Zhaoqing has its quieter notes too. 10 The chill of winter finds its way,
10’ 11’ 11 with December‘s average low at a cool 12.5°C and a record low that dips to an almost freezing
1.7°C. 12 The rain seems to sense the need for tranquility, 13 with precipitation also taking a back seat in winter.
FDUVIS
数据表格
Month
Jan
Feb
Mar
Apr
May
…
Record High Average High Daily Mean
28.3
18.2
14.2
31.4
20.4
16.4
32.4
22.3
18.6
34.4
26.3
22.6
34.9
30.0
26.0
…
…
…
31
…
…
…
…
…
…
…
32. 数据叙事文本
数据表格
1 Nestled in the heart of Guangdong, Zhaoqing’s climate tells a story as rich as its heritage. 2 Did you know, 3
the hottest months are from May to August? 4 It’s a symphony of heat, 5 where daily mean temperatures often
flirt with the mercury‘s upper 30℃. But the city doesn’t just tip its hat to the sun. 6 Rainfall plays its part, 7
especially in May and June, 8 where it reaches its crescendo with over 250mm, 9 making it a weather sonata of
heat and rain. But like every masterpiece, Zhaoqing has its quieter notes too. 10 The chill of winter finds its way,
10’ 11’ 11 with December‘s average low at a cool 12.5°C and a record low that dips to an almost freezing
1.7°C. 12 The rain seems to sense the need for tranquility, 13 with precipitation also taking a back seat in winter.
数据视频
1
2
FDUVIS
3
4
5
6
7
Narrative
Player 9
8
Month
Jan
Feb
Mar
Apr
May
…
10
Record High Average High Daily Mean
28.3
18.2
14.2
31.4
20.4
16.4
32.4
22.3
18.6
34.4
26.3
22.6
34.9
30.0
26.0
…
…
…
11
12
13
32
…
…
…
…
…
…
…
33. 数据叙事文本
数据表格
1 Nestled in the heart of Guangdong, Zhaoqing’s climate tells a story as rich as its heritage. 2 Did you know, 3
the hottest months are from May to August? 4 It’s a symphony of heat, 5 where daily mean temperatures often
flirt with the mercury‘s upper 30℃. But the city doesn’t just tip its hat to the sun. 6 Rainfall plays its part, 7
especially in May and June, 8 where it reaches its crescendo with over 250mm, 9 making it a weather sonata of
heat and rain. But like every masterpiece, Zhaoqing has its quieter notes too. 10 The chill of winter finds its way,
10’ 11’ 11 with December‘s average low at a cool 12.5°C and a record low that dips to an almost freezing
1.7°C. 12 The rain seems to sense the need for tranquility, 13 with precipitation also taking a back seat in winter.
数据视频
1
2
FDUVIS
3
4
5
6
7
Narrative
Player 9
8
Month
Jan
Feb
Mar
Apr
May
…
10
Record High Average High Daily Mean
28.3
18.2
14.2
31.4
20.4
16.4
32.4
22.3
18.6
34.4
26.3
22.6
34.9
30.0
26.0
…
…
…
11
12
13
33
…
…
…
…
…
…
…
34. Narrative Player
— — Reviving Data Narratives with Visuals
叙事文本
叙事分析可视化生成
文本切片与分类基于数据事实的可视化映射
子句
数据事实集提取与验证
初始数据事实集
数据表格
FDUVIS
数据事实集推理与补全
数据事实
候选集
可视化候选集
可视化序列选择
数据视频
选中的可视化序列
多通道效果增强
34
35. 工作流 — 叙事分析
Nestled in the heart of Guangdong, Zhaoqing’s climate tells a story as rich as its heritage.
Did you know, the hottest months are from May to August? It's a symphony of heat,
where daily mean temperatures often flirt with the mercury's upper 30℃.
叙事文本
But the city doesn't just tip its hat to the sun. Rainfall plays its part, especially in May and June,
where it reaches its crescendo with over 250mm, making it a weather sonata of heat and rain.
But like every masterpiece, Zhaoqing has its quieter notes too. The chill of winter finds its way,
with December's average low at a cool 12.5°C and a record low that dips to an almost freezing 1.7°C.
The rain seems to sense the need for tranquility, with precipitation also taking a back seat in winter.
数据表格
FDUVIS
Month
Jan
Feb
Mar
Apr
May
…
Record High Average High Daily Mean
28.3
18.2
14.2
31.4
20.4
16.4
32.4
22.3
18.6
34.4
26.3
22.6
34.9
30.0
26.0
…
…
…
…
…
…
…
…
…
…
35
36. 工作流 — 叙事分析
Nestled in the heart of Guangdong, Zhaoqing’s climate tells a story as rich as its heritage.
Did you know,
the hottest months are from May to August?
It's a symphony of heat,
where daily mean temperatures often flirt with the mercury's upper 30℃.
But the city doesn't just tip its hat to the sun.
子句
Rainfall plays its part,
especially in May and June,
where it reaches its crescendo with over 250mm,
making it a weather sonata of heat and rain.
But like every masterpiece, Zhaoqing has its quieter notes too.
The chill of winter finds its way,
with December's average low at a cool 12.5°C and a record low that dips to an almost freezing
1.7°C.
The rain seems to sense the need for tranquility,
FDUVIS
with precipitation also taking a back seat in winter.
36
37. 工作流 — 叙事分析
Nestled in the heart of Guangdong, Zhaoqing’s climate tells a story as rich as its heritage.
Did you know,
the hottest months are from May to August?
It's a symphony of heat,
where daily mean temperatures often flirt with the mercury's upper 30℃.
But the city doesn't just tip its hat to the sun.
子句
Rainfall plays its part,
especially in May and June,
where it reaches its crescendo with over 250mm,
making it a weather sonata of heat and rain.
But like every masterpiece, Zhaoqing has its quieter notes too.
The chill of winter finds its way,
with December's average low at a cool 12.5°C and a record low that dips to an almost freezing 1.7°C.
The rain seems to sense the need for tranquility,
FDUVIS
with precipitation also taking a back seat in winter.
37
38. 工作流 — 叙事分析
目标子句
where daily mean temperatures often flirt with the
mercury's upper 30℃.
C
初步抽取出的数据事实
"Type": "correlate",
F1
"Parameter": null,
"Measures": ["Daily mean", "Record
high"],
"Context": {},
"Breakdowns": ["Month"],
"Focus": ["May", "Jun", "Jul", "Aug"]
"Type": "distribution",
F2
"Parameter": null,
"Measures": ["Daily mean"],
"Context": {},
"Breakdowns": ["Month"],
"Focus": ["May", "Jun", "Jul", "Aug"]
"Type": "deviation",
F3
"Parameter": 30,
"Measures": ["Daily mean"],
"Context": {},
"Breakdowns": ["Month"],
"Focus": ["May", "Jun", "Jul", "Aug"]
FDUVIS
数据事实集提取与验证
数据事实抽取的提示词
You are a narration analyst who specializes in converting
clauses of long narratives individually into multiple facts.
{{Definition of fact format and individual elements}}
{{Few examples to guide the generation}}
You are required to do the extraction.
The data is [data table]. The narration is [narration]. The
ClauseList is [clause1, clause2, …].
List 3 possible fact candidates in JSON as [clause1: {F1, F2,
F3}, .... ], where F1, F2, F3 are 3 fact candidates.
重写数据事实的提示词
The fact candidate is : {F1, F2, F3},
The data table is [data table],
The whole context is: "…, the hottest months are from May to
August? It‘s a symphony of heat, {} , …”
Write Clauses {C1, C2, C3} individually based on {F1, F2, F3} to
fill in the blank of the context.
重写后的子句
where the daily mean temperature and the record high
show a strong positive correlation. 𝑆𝑖𝑚(𝐸! , 𝐸! ) = 0.804
#
C
1
with the daily mean temperature soaring above 26°C for each C
of these months.
𝑆𝑖𝑚(𝐸!" , 𝐸! ) =
2
0.841
as the daily mean temperature deviates significantly from the C
30°C mark.
3
𝑆𝑖𝑚(𝐸!! , 𝐸! ) = 0.903
38
39. 工作流 — 叙事分析
Nestled in the heart of Guangdong, Zhaoqing’s climate tells a story as rich as its heritage.
Did you know,
the hottest months are from May to August?
It's a symphony of heat,
where daily mean temperatures often flirt with the mercury's upper 30℃.
But the city doesn't just tip its hat to the sun.
子句
Rainfall plays its part,
especially in May and June,
where it reaches its crescendo with over 250mm,
making it a weather sonata of heat and rain.
But like every masterpiece, Zhaoqing has its quieter notes too.
The chill of winter finds its way,
with December's average low at a cool 12.5°C and a record low that dips to an almost freezing 1.7°C.
The rain seems to sense the need for tranquility,
FDUVIS
with precipitation also taking a back seat in winter.
39
40. 工作流 — 叙事分析
Nestled in the heart of Guangdong, Zhaoqing’s climate tells a story as rich as its heritage.
Did you know,
the hottest months are from May to August?
It's a symphony of heat,
where daily mean temperatures often flirt with the mercury's upper 30℃.
But the city doesn't just tip its hat to the sun.
子句
Rainfall plays its part,
especially in May and June,
where it reaches its crescendo with over 250mm,
making it a weather sonata of heat and rain.
But like every masterpiece, Zhaoqing has its quieter notes too.
The chill of winter finds its way, 模糊子句
with December's average low at a cool 12.5°C and a record low that dips to an almost freezing 1.7°C.
The rain seems to sense the need for tranquility,
FDUVIS
with precipitation also taking a back seat in winter.
40
41. 工作流 — 叙事分析
… where daily mean temperatures oden flirt with
the mercury's upper 30s…
The chill of winter finds its way,
模糊子句
with December‘s average low at a cool 12.5°C
and a record low that dips to an almost freezing
1.7°C.
Properties: Daily mean
Values:May, Jun, Jul, Aug
Properties: Daily mean, Average low, Record low,
Average high, Record high
“chill”
Values: Dec, Jan, Feb
“winter”
Properties: Average low, Record low
Values:Dec
FDUVIS
数据事实集推理与补全
推断出的数据事实
…
"Measures": ["Daily mean"],
"Focus": ["Dec"],
…F1
…
"Measures": ["Average low",
"Record low",
"Daily mean"],
"Context": {"Month": ["Dec"]},
…F2
…
"Measures": ["Average low",
"Record low"],
"Context": {"Month": ["Dec"]},
…F3
41
42. 工作流 — 叙事分析
The chill of winter finds its way,
数据事实集提取与验证
数据事实集推理与补全
…
…
数据事实
FDUVIS
42
43. 工作流 — 可视化生成
The chill of winter finds its way,
FDUVIS
……
……
43
44. 工作流 — 可视化生成
最小化过渡损失
强调视觉聚焦
优化
激活“主要可视化”
子句 i+1
可视化备选集 i+1
可视化备选集 i
子句 i
The chill of winter finds its way,
子句 i-1
FDUVIS
…
…
可视化备选集i-1
44
45. 工作流 — 可视化生成
1 Nestled in the heart of Guangdong, Zhaoqing’s climate tells a story as rich as its heritage. 2 Did you know, 3 the hottest months are from May to August? 4 It’s a
symphony of heat, 5 where daily mean temperatures often flirt with the mercury‘s upper 30℃. But the city doesn’t just tip its hat to the sun. 6 Rainfall plays its part, 7
especially in May and June, 8 where it reaches its crescendo with over 250mm, 9 making it a weather sonata of heat and rain. But like every masterpiece, Zhaoqing has
its quieter notes too. 10 The chill of winter finds its way, 10’ 11’ 11 with December‘s average low at a cool 12.5°C and a record low that dips to an almost freezing
1.7°C. 12 The rain seems to sense the need for tranquility, 13 with precipitation also taking a back seat in winter.
1
2
FDUVIS
3
4
5
6
7
8
9
10
11
12
13
45
46. 工作流 — 可视化生成
1 Nestled in the heart of Guangdong, Zhaoqing’s climate tells a story as rich as its heritage. 2 Did you know, 3 the hottest months are from May to August? 4 It’s a
symphony of heat, 5 where daily mean temperatures often flirt with the mercury‘s upper 30℃. But the city doesn’t just tip its hat to the sun. 6 Rainfall plays its part, 7
especially in May and June, 8 where it reaches its crescendo with over 250mm, 9 making it a weather sonata of heat and rain. But like every masterpiece, Zhaoqing has
its quieter notes too. 10 The chill of winter finds its way, 10’ 11’ 11 with December‘s average low at a cool 12.5°C and a record low that dips to an almost freezing
1.7°C. 12 The rain seems to sense the need for tranquility, 13 with precipitation also taking a back seat in winter.
1
2
3
4
5
6
7
8
9
10
11
12
13
One-to-Two transition
Transition with
intermediate
frame
FDUVIS
46
47. Example Case:
The weather in Zhaoqing
FDUVIS
47
48. FDUVIS
48
49. 人智融合数据洞察
大模型驱动智能可视分析数据洞察的高效信息传递多模态的创意信息增强
复杂决策与交互分析文本+数据:构建数据故事视频视频+可视化:融合真实与虚拟
人智协同的深度洞察挖掘可视化+数据:智能数据总结3D特效场景交互式创作
AR+VIS探索
FDUVIS
49
50. !"
!"#$%&'()*+,-!"./01234560789:;<=>?,-@AB
CCDEF?GH./IJ
Chart-to-Text1VisText2
DataTales3VL2NL
KLMNOP
4
[1] Jason Obeid and Enamul Hoque. 2020. Chart-to-Text: Generating Natural Language Descriptions for Charts by Adapting the Transformer Model. In Proceedings of the 13th International Conference on Natural Language
Generation, pages 138–147, Dublin, Ireland. Association for Computational Linguistics.
[2] Benny Tang, Angie Boggust, and Arvind Satyanarayan. 2023. VisText: A Benchmark for Semantically Rich Chart Captioning. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 7268–7298, Toronto, Canada. Association for Computational Linguistics.
[3] Sultanum N, Srinivasan A. Datatales: Investigating the use of large language models for authoring data-driven articles[C]//2023 IEEE Visualization and Visual Analytics (VIS). IEEE, 2023: 231-235.
[4] KoFDUVIS
H K, Jeon H, Park G, et al. Natural language dataset generation framework for visualizations powered by large language models[C]//Proceedings of the 2024 CHI Conference on Human Factors in Computing50
Systems.
5
0
51. #$
5
1
FDUVIS
51
52. #$
!"#$
3
FDUVIS
52
53. #$
!"#$
%&'(
3
%&'(
FDUVIS
53
54. #$
!"#$
%&'(
3
%&'(
FDUVIS
)"#$
54
55. %&!"'()
CCDQHRSEFTKMUVWX!"#$?YZ
4
*+,-./01)234
'56789:;<)=>?@ABC
FDUVIS
DEFGHIJKLMNO
PQ8RS
55
56. %&!"'()
CCDQHRSEFTKMUVWX!"#$?YZ
`abcdefg)2KLMNhi
5
*+,-./
'56789:;<
FDUVIS
01)234
DEFGHIJKLMNO
PQ8RS
)=>?@ABC
TUV8KLMN8WXYZ[\]^_
56
57. *+,-
[' C\]C^! _`0_abcde!"#$?fH./
6
[1] A. Lundgard and A. Satyanarayan. Accessible visualization via natural language descriptions: A four-level model of semantic content. IEEE Transactions on Visualization and Computer Graphics,
28(1):1073–1083, 2022.
FDUVIS
57
58. *+,-
[' C\]C^! _`0_abcde!"#$?fH./
Level 1: jklmnnopqrpst
6
[1] A. Lundgard and A. Satyanarayan. Accessible visualization via natural language descriptions: A four-level model of semantic content. IEEE Transactions on Visualization and Computer Graphics,
28(1):1073–1083, 2022.
FDUVIS
58
59. *+,-
[' C\]C^! _`0_abcde!"#$?fH./
Level 1: jklmnnopqrpst
Level 2: 统计特征nn峰值、分布等
6
[1] A. Lundgard and A. Satyanarayan. Accessible visualization via natural language descriptions: A four-level model of semantic content. IEEE Transactions on Visualization and Computer Graphics,
28(1):1073–1083, 2022.
FDUVIS
59
60. *+,-
[' C\]C^! _`0_abcde!"#$?fH./
Level 1: jklmnnopqrpst
Level 3: uvwxvyznn)2{|t
Level 2: 统计特征nn峰值、分布等
6
[1] A. Lundgard and A. Satyanarayan. Accessible visualization via natural language descriptions: A four-level model of semantic content. IEEE Transactions on Visualization and Computer Graphics, 28(1):1073–
1083, 2022.
FDUVIS
60
61. *+,-
~•CCDwEFbcde!"#$bNY€<?gh`k
数据集
独立标注幻觉类
型
合并结果
最终检查与标注
🔍 gh_a
8
• \ijgh`k
• \llmghno
• pqCrsC^tuvCCDwEF!
"#$x?fHyz{|}_`
FDUVIS
61
62. !"
9
FDUVIS
62
63. !"
!"#$%&'()*+
•bcde=>‚_ƒ„…?†c
‹Œ•Ž••‘†c
10
‡ˆ=>?34‰Š
FDUVIS
63
64. !"
11
!",-$%&'*+)
.-/0123
FDUVIS
64
65. !"
4567)89:;
12
FDUVIS
65
66. !"
<=>?@89:;
13
FDUVIS
66
67. !"
14
FDUVIS
67
68. Benchmark
’“”•–—˜™š›œ0•'žŸ
¡¢kw!"#$EFx?"<
15
FDUVIS
68
69. Benchmark
📊 Benchmark
• 75 9!"v«#$
• ¬- 2,693 m®¯
🔍
17
Benchmark £¤?34¥¦
• gh`k?§¨_a
• !"#$EF©ª?žŸ
FDUVIS
¡
69
70. #$
📈
18
¡75 m Benchmark !"
✏ 34
¡‰Š
• 9°¢k±ChartInsighter vs. Gold / GPT-4/ VL2NL
• ‰Š±²‘ + ³´µKL{¶·¸{¶¹º»¼
• UVWX» =µL2 + L3 ®¯=¼/ ®¯~=
• gh½ = gh®¯= / ®¯~=
FDUVIS
70
71. ChartInsighter
ChartInsighter0¾j•'¿-bcde!"#$EFxghÀÁ?ÂÃ0Œº%[K=>Ä
••'²‘EFbcde!"#$?ÅÆ
•Ç“*ÈÉ?!"#$Benchmark
19
https://github.com/wangfen01/ChartInsig
hter
FDUVIS
71
72. 人智融合数据洞察
大模型驱动智能可视分析数据洞察的高效信息传递多模态的创意信息增强
复杂决策与交互分析文本+数据:构建数据故事视频视频+可视化:融合真实与虚拟
人智协同的深度洞察挖掘可视化+数据:智能数据总结3D特效场景交互式创作
AR+VIS探索
FDUVIS
72
73. KinemaFX:
一种交互式粒子特效探索与创作系统
FDUVIS
73
74. 系统流程
a. 初始意图输入:用户结合语义文本(a1)和图形化输入(a2)来直观地表达设计意图
b. 粒子特效探索:通过在语义特征和运动特征权重控制(b1)与用户隐式偏好引导的迭代过程(b2)来探索粒子特
效
c. 粒子特效组合:选择满意的粒子特效(c1),调整并组合(c2)粒子特效形成完整的特效作品(c3)
FDUVIS
74
75. 系统演示
FDUVIS
75
76. 用户实验效果展示
FDUVIS
76
77. 77
FDUVIS
77
78. FDUVIS
78
79. 相关文章
}Tian Qiu, Fen Wang, Shaohua Huang, Meng Guo, Yuheng Zhao, Jincheng Li, Siming Chen*. SmartMLVs: LLM-Enabled
Multiple Linked Views Generation for Interactive Visualization. In Proceedings of IEEE PacificVis 2025, Best Paper
Honorable Mention.
}Yuheng Zhao, Junjie Wang, Linbin Xiang, Xiaowen Zhang, Zifei Guo, Cagatay Turkay, Yu Zhang, Siming Chen*. LightVA:
Lightweight visual analytics with LLM agent-based task planning and execution. IEEE Transactions on Visualization and
Computer Graphics, Accepted, 2024.
}Zekai Shao, Leixian Shen, Haotian Li, Yi Shan, Huamin Qu, Yun Wang*, Siming Chen*. Narrative Player: Reviving Data
Narratives with Visuals. IEEE Transactions on Visualization and Computer Graphics, Accepted, 2025.
}Fen Wang, Bomiao Wang, Xueli Shu, Zhen Liu, Zekai Shao, Chao Liu, Siming Chen*. ChartInsighter: An Approach for
Mitigating Hallucination in Time-series Chart Summary Generation with A Benchmark Dataset. IEEE Transactions on
Visualization and Computer Graphics (IEEE PacificVis'25), Accepted, 2025.
}Lin Gao, Leixian Shen, Yuheng Zhao, Jiexiang Lan, Huamin Qu, Siming Chen*. SceneLoom: Communicating Data with
Scene Context. IEEE Transactions on Visualization and Computer Graphics (IEEE VIS 2025), Conditional Accept, 2026.
}Jun-Hsiang Yao, Xinfang Tian, Jielin Feng, Gulshat Amirkhanova, Kai Xu, Siming Chen*. Beyond the Broadcast: Enhancing
VR Tennis Broadcasting through Embedded Visualizations and Camera Techniques. IEEE Transactions on Visualization
and Computer Graphics (IEEE VIS 2025), Conditional Accept, 2026.
}Yifei Zhang, Lin-Ping Yuan, Yuheng Zhao, Jielin Feng, Siming Chen*. KinemaFX: A Kinematic-Driven Interactive System
for Particle Effect Exploration and Customization. In Proceedings of ACM UIST 25, Conditional Accept.
FDUVIS
79
80. 上海市数据科学重点实验室 复旦大学大数据学院 陈思明 青年研究员,博导
数据可视化将数据转换为图形图像等可视的形式,方便用户快速发掘和理解数据
里面的故事,在数据和用户之间架起桥梁,是大数据分析的最后一公里。
研究方向一:领域驱动的大模型驱动的智能可视分析
• 构建数据分析智能体作为分析助手,自动进行任务分解与规划,嵌入人机交
互的可视化环境进行高效、快捷、低代码数据分析
• 根据用户需求自动生成可视化,组合成可视分析系统,提供满足人类需求的
智能分析
研究方向二:大模型驱动的智能可视化故事叙述
• 构建大模型驱动的智能可视化设计,快速对数据进行生成与表达,生成满足
需求图形
• 构建大模型驱动的数据视频,通过动态的方式生动、灵活展示数据
研究方向三:数字孪生与沉浸式可视化
• 支持VR、AR结合可视化与场景渲染,沉浸式数据分析
http://fduvis.net simingchen3@gmail.com
FDUVIS
陈思明,复旦大学大数据学院青年研究员,博士生
导师,上海市高层次引进人才,复旦学士,北大博
士,从事大数据可视化与可视分析的研究,共发表
论 文 100 余 篇 , 其 中 在 IEEE VIS , IEEE TVCG,
ACM CHI, CSCW,UIST等顶级国际可视化与人机
交互会议以及期刊(CCF A)上发表40余篇文章。曾获
评AI2000十年间国际可视化研究最有影响力提名奖
(全球100名),担任IEEE VIS 国际程序委员会委员,
IEEE CG&A国际期刊副主编,IEEE PacificVis论文
(VizNotes短文)主席等。
应用落地领域
自动驾驶金融科技
舆情分析人文社会科学大数据
80
81. 复旦大学可视分析与智能决策实验室
(FDUVIS) h(p://fduvis.net/
•复旦大学可视分析与智能决策实验室
(FDU-VIS)成立于2020年9月,我们
的研究方向涵盖了可视化与可视分析、
人机混合智能、用户行为分析、决策
支持与数据新闻故事叙述等,并在多
个应用领域,包括社交媒体、网络空
间安全、时空城市大数据、人文历史
数据与金融科技方面有一定的科研成
果。
•
•联系方式:
simingchen3@gmail.com