让AI不止回答问题:企业级Agentic AI重构智能生产力
如果无法正常显示,请先停止浏览器的去广告插件。
        
                1. 让 AI 不止回答问题:
企业级 Agentic AI 重构智能生产力
杨扬
Snowflake AI数据云
亚太及日本地区解决方案工程副总裁            
                        
                2.             
                        
                3. An Easier to Use, Connected, Trusted Platform
更加易用、互联、可信的平台
外部引擎
连接生态体系
一体化集成
合作伙伴
Snowflake Marketplace
溯源: Snowflake 是一家成立于 2012年的数据
和AI公司; 2020年于纽约证券交易所 (NYSE) 上市
全托管一体化平台
分析
数据工程
合作:《福布斯》全球 2,000 强企业里,已有751
家企业正在使用 Snowflake ;全球合作企业超过
12,000家
应用&合作
Snowflake Horizon Catalog 和
Iceberg Rest 的 Catalog 可互操作
安全与治理
业绩: 2025财年全年业绩(截至2025年1月31日):
营收达到 35亿美元(同比增长 30%)
弹性计算与引擎
数据湖仓
数据仓库
数据网状架构
互操作存储
与灵活架构
捷报:问鼎2025年 《财富》全球未来50强榜首
非结构化数据
跨云基础设施
半结构化数据
亚马逊
结构化数据
Iceberg 表
微软
混合表
Snowflake 表
谷歌云            
                        
                4. The Five Pillars of Enterprise-Grade Agentic AI
企业级智能体 AI 的五大核心支柱
1. Agentic Orchestration & Tool Use
智能体编排与工具使用
2. Structured Data Intelligence
结构化数据智能
Com positional workflows and dynamic tool
use
组合式工作流和动态工具调用
From semantic modeling and accurate SQL generation
语义建模和准确的 SQL 生成
Agentic Research
3. Unstructured Data Intelligence
非结构化数据智能
4. Observability & Trust
可观测性与信任
5. System Optimizations
系统优化
Extracting grounded insights from diverse unstructured data sources
从多样化的非结构化数据源中提取可靠见解
Transparent, traceable, and controllable decisions
透明、可追溯和可控的决策
Fast and cost-effective agent execution
快速且经济的智能体执行
Build intelligent, composable, trustworthy, and efficient enterprise AI agents.
构建智能、可组、可信且高效的企业级AI智能体。            
                        
                5. © 2024 Snowflake Inc. All Rights Reserved
5            
                        
                6. Pillar 1: Agentic Orchestration
核心支柱一:智能体编排
Planning, Adapting and Composing Tools in Real Time 实时规划、调整与编排工具
● Challenge: Enterprise tasks span multiple tools, data types and systems, and they require many steps of operations.
• Our Solution: Agentic reasoning orchestration system
○
○
○
•
Planning – Selects tools, decomposes tasks, defines the strategy
Execution – Maintains shared context across steps
Adaptation – Updates the plan as new information emerges
From research to production: Our orchestration system powers Snowflake Intelligence
○
○
Orchestration – Operationalized by Cortex Agents
Tools – Leverage Cortex Analyst, Cortex Search, and visualization components            
                        
                7. Pillar 1: Agentic Orchestration in Action
核心支柱一:智能体编排实战
Key Capabilities
•
•
•
Multi-hop reasoning with tool
chaining
Context-Aware Execution
Modular and extensible
framework
Composable, Multi-tool,
Context-rich reasoning
— tailored for enterprise workflows.            
                        
                8. Research Paper - Modular and extensible
研究论文 — 模块化与可扩展性            
                        
                9. © 2024 Snowflake Inc. All Rights Reserved
9            
                        
                10. Pillar 2: Structured Data Intelligence
Building Agents That Reason and Act
●
构建可推理、可行动的智能体
Recap: From Reasoning to Agentic Systems
○
○
○
●
核心支柱二:结构化数据智能
Reasoning models give us a strong base for structured query generation
But real enterprise SQL tasks are often underspecified, schema-heavy, and multi-step
These challenges demand agents that can clarify, probe, and verify
Enter ReFoRCE — our agentic system for real-world SQL
○
○
○
○
Schema compression
Self-refinement
Majority-vote consensus
Column exploration (when needed)            
                        
                11. ReFoRCE in Action: Agentic Reasoning Over Complex SQL Tasks
ReFoRCE 实战:面向复杂 SQL 任务的智能体推理            
                        
                12. ReFoRCE Achieves #2 Accuracy on Spider 2.0 Lite
准确率在 Spider 2.0 Lite 排第二
Our agentic semantic models improved accuracy
by more than 20%, as compared to agents
without schema understanding
Snapshot from https://spider2-sql.github.io/ on Sep 29, 2025            
                        
                13. AT&T 案例研究:
推动 Text2SQL 进阶            
                        
                14. Ask AT&T
向 AT&T 提问
100K+ 90 410
Users Onboarded Fine-tuned SLM Production Agentic Workers
超十万员工数 90 个微调小语言模型 410 个生产环境智能体工作单元
450M+ 71 20%
Production API Calls Production RAG+FT Coding Efficiency Gain
四亿五千万次生产级 API 调用 71个生产环境检索增强生成 + 微调方案 代码开发效率提升20%            
                        
                15. AT&T’s Multi-Pronged Approach
AT&T 多管齐下
1.
2.
3.
4.
5.
6.
7.
8.
9.
Data Profiling - Systematic querying for table properties
Schema Deduplication – Curating database schema
Schema Linking
Self-Consistency - Leveraging self-consistency techniques to improve reliability
Schema Search – with GraphRAG
Schema Refinement - LLMs help us build elements of the Relational KG
Query Log Analysis - Extract patterns from expert-written queries
SQL-to-Text Generation - LLM-powered question generation from SQL
Fine Tuning            
                        
                16. 模式去重            
                        
                17. Schema Deduplication
模式去重
Goal: Reducing the token count by deduping schema
• Time series databases
• Database information compression:
○ Full table name
○ Column name
○ Column type
○ Column description
通过模式去重减少 Token 数            
                        
                18. Research Paper - ReFoRCE Text2SQL Agent
研究报告: ReFoRCE Text2SQL 智能体            
                        
                19. Pillar 3: Unstructured Data Intelligence
Ground agents in enterprise knowledge
● Verified DIversification with ConsolidaTion (VerDICT)
● Retriever: relevance feedback: Unlike DtV, which diversifies
into all possible interpretations, our approach first checks which
interpretations are supported by the retrieved passages.
●
Generator: answerability feedback: Even if a document is
relevant to the interpretation grounded to this document, it may not answer
the query. Thus retrieval alone is insufficient for feedback — we introduce a
generator feedback, to ensure that an answer can be generated before
retraining an interpretation.
核心支柱三:非结构化数据智能
让智能体扎根企业知识            
                        
                20. Pillar 3: Unstructured Data Intelligence
Ground agents in enterprise knowledge
●
●
Verified Diversification improved
groundedness by 1.8x over baseline
Efficiency alone isn’t enough — accuracy is critical. In
our evaluations, 93% of VerDICT-generated
interpretations led to correct and grounded answers,
compared to just 56% with DtV on Llama 3.3 70B and
GPT-4o
●
Even human-generated interpretations scored only
65%, proving that VerDICT is both accurate and
reliable.
核心支柱三:非结构化数据智能
让智能体扎根企业知识            
                        
                21. © 2024 Snowflake Inc. All Rights Reserved
21            
                        
                22. Pillar 4: Observability & Trust
核心支柱四:可观测性与信任
Transparent, traceable, and controllable decisions-making
透明、可追溯、可控的决策机制
In enterprise AI, intelligence isn’t enough; systems must be transparent, verifiable and cost-aware.
● Accuracy
Can AI provide accurate
answers based on facts?
● Effectiveness
Will it be performant and
cost effective?
● Trust
Compliance
Ethicalness
● End-to-end evaluation:
Evaluate the performance of agents and apps, using techniques such as LLM-as-a-
judge. It can report metrics such as relevance, groundedness and harmfulness,
giving customers the ability to quickly iterate and refine the agent for improved
performance.
● Comparison:
Compare evaluation runs side by side and assess the quality and accuracy of
responses across different LLM configurations to identify the best configuration
for production deployments.
● Comprehensive tracing:
Logging for every step of agent executions across input prompts, tool use and
final response generation using OpenTelemetry traces. This allows easy
debugging and refinement for accuracy, latency and cost.
OpenTelemetry            
                        
                23. Pillar 4: Observability & Trust
核心支柱四:可观测性与信任
Transparent, traceable, and controllable decisions-making
透明、可追溯、可控的决策机制
In enterprise AI, intelligence isn’t enough; systems must be transparent, verifiable and cost-aware.            
                        
                24. © 2025 Snowflake Inc. All Rights Reserved
24            
                        
                25. Pillar 5: System Optimizations
核心支柱五:系统优化
Arctic Inference: Responsive, Fast and Efficient — Finally All at Once Arctic Inference: 兼顾灵敏、快速和高效
Inference systems needs to be:
⚫ Responsive (prefill speed – time to first token)
⚫ Fast Generation (generation speed of output
tokens)
⚫
Cost Efficient (combined throughput)
Existing parallelism leads to tradeoffs
Tensor Parallel
⚫ Split each token in each request across GPUs
⚫ Incurs coordination overhead
⚫ Good for latency, bad for throughput
Data Parallel
•
•
•
Splits work across requests
No Communication overhead
Good for throughput but bad for latency
First Response
(Prefill Speed)
Generation
Speed            
                        
                26. Mitigating Tradeoff with Shift Parallelism
用Shift Parallelism化解取舍难题
Can we combined tensor and data parallelism?
•
No because they have different KV data layouts
Match data layout with Arctic Sequence Parallel
•
•
•
Split work within request across tokens
Less communication than tensor parallel
KV data layout same as tensor parallel
Shift Parallelism: Tensor + Arctic Sequence Parallel
•
•
•
Tensor Parallel for small batch
Arctic Sequence Parallel for large batch
No more latency vs throughput tradeoffs
First Response
(Prefill Speed)
Generation
Speed
Tensor Parallel
Data Parallel            
                        
                27. One of the Fastest and most Efficient Inference
Systems — And It’s Open Source
业界最快、最高效的推理系统之一:现已全面开源
Latency vs Throughput
Arctic Inference’s breakthrough performance achieved via novel
Shift Parallelism + multiple SoTA optimizations
Lowest end-to-end latency and highest cost efficiency for
generative AI among open-source
•
•
Up to 3.4x faster e2e response latency
Up to 1.7x higher throughput
Third Party Benchmarking* (June 5, 2025)
Up to 16x higher throughput for embedding models over vLLM.
Powering select workloads in Snowflake Cortex AI
*GPU Cloud Providers Only
Snowflake
And now it’s open source — free for the community to build,
extend, and use
Arctic Inference makes responsive, fast and cost efficient AI accessible to the AI Community.            
                        
                28. Snowflake Cortex AI is Easy, Connected, Trusted
易用、互联、可信的Snowflake Cortex AI
SNOWFLAKE CORTEX AI
AGENTIC BUSINESS INSIGHT
MODELS
Agent APIs
Cortex Agents GA Soon
Agent Apps
Snowflake Intelligence PU
RBAC
Guardrails
STATE OF THE ART RETRIEVAL
Unstructured Data Retrieval
Cortex Search
Structured Data Retrieval
Cortex Analyst
Evaluations
Monitoring
SCALABLE AI PROCESSING
Multimodal
Structured
Data Retrieval AI-powered
Cortex Analyst
Cortex AISQL PU
SQL
GOVERNANCE
Document Processing
Document AI, Parse, Embed
AI Gateway
STR
DOC
AUDIO
IMAGE            
                        
                29. InfoQDemoFinal.mov            
                        
                30. The Five Pillars of Enterprise-Grade Agentic AI
企业级智能体 AI 的五大核心支柱
1. Agentic Orchestration & Tool Use
智能体编排与工具使用
2. Structured Data Intelligence
结构化数据智能
Com positional workflows and dynamic tool
use
组合式工作流和动态工具调用
From semantic modeling and accurate SQL generation
语义建模和准确的 SQL 生成
Agentic Research
3. Unstructured Data Intelligence
非结构化数据智能
4. Observability & Trust
可观测性与信任
5. System Optimizations
系统优化
Extracting grounded insights from diverse unstructured data sources
从多样化的非结构化数据源中提取可靠见解
Transparent, traceable, and controllable decisions
透明、可追溯和可控的决策
Fast and cost-effective agent execution
快速且经济的智能体执行
Build intelligent, composable, trustworthy, and efficient enterprise AI agents.
构建智能、可组、可信且高效的企业级AI智能体。            
                        
                31.             
                        
                32. THANKS
大模型正在重新定义软件
Large Language Model Is Redefining The Software