专家带你吃透 Flink 架构:一个新版 Connector 的实现

摘要

Flink 可以说已经是流计算领域的事实标准,其开源社区发展迅速,提出了很多改进计划(Flink Improvement Proposals,简称 FLIP)并不断迭代,几乎每个新的版本在功能、性能和使用便捷性上都有所提高。Flink 提供了丰富的数据连接器(connecotr)来连接各种数据源,内置了 kafka、jdbc、hive、hbase、elasticsearch、file system 等常见的 connector,此外 Flink 还提供了灵活的机制方便开发者开发新的 connector。对于 source connector 的开发,有基于传统的 SourceFunction 的方式和基于 Flink 改进计划 FLIP-27 的 Source 新架构的方式。本文首先介绍基于 SourceFunction 方式的不足,接着介绍 Source 新架构以及其设计上的深层思考,然后基于 Flink 1.13 ,以从零开发一个简单的 FileSource connector 为例,介绍开发 source connector 的基本要素,尽量做到理论与实践相结合加深大家的理解。

流计算 Oceanus 是大数据产品生态体系的实时化分析利器,是基于 Apache Flink 构建的具备一站开发、无缝连接、亚秒延时、低廉成本、安全稳定等特点的企业级实时大数据分析平台。流计算 Oceanus 以实现企业数据价值最大化为目标,加速企业实时化数字化的建设进程。流计算 Oceanus 提供了便捷的控制台环境,方便用户编写 SQL 分析语句、ETL 作业或者上传运行自定义 JAR 包,支持作业运维管理。欢迎大家试用,目前还有新用户1元秒杀活动,机会难得,不容错过。

欢迎在评论区写下你对这篇文章的看法。

评论

首页 - Wiki
Copyright © 2011-2024 iteam. Current version is 2.137.3. UTC+08:00, 2024-11-25 22:18
浙ICP备14020137号-1 $访客地图$